Topology-optimized Dual-Polarization Dirac Cones

Zin Lin1, Lysander Christakis2, Yang Li3, Eric Mazur1, Alejandro W. Rodriguez3, and Marko Lončar4

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
2Department of Physics, Yale University, New Haven, CT 06511 and
3Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544

(Dated: May 11, 2017)

We apply a large-scale computational technique, known as topology optimization, to the inverse design of photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple isotropic dielectric materials, which exhibit dual-polarization and dual-wavelength Dirac cones. We demonstrate the flexibility of this technique by designing photonic crystals of different symmetry types, such as ones with four-fold and six-fold rotational symmetry, which possess Dirac cones at different points within the Brillouin zone. The demonstrated and related optimization techniques could open new avenues to band-structure engineering and manipulating the propagation of light in periodic media, with possible applications in exotic optical phenomena such as effective zero-index media and topological photonics.

PACS numbers: 42.70Qs, 78.67.Pt, 02.30.Zz, 02.60.Pn

FIG. 1. Topology-optimized unit cell. Black (white) regions have relative permittivity \(\epsilon_r \approx 5.5 \) (\(\epsilon_r = 1 \)). Gray regions with intermediate permittivities are also seen. Note that the structure obeys \(C_{4v} \) symmetry. The band structure reveals two overlapping Dirac cones, one for TM polarization (solid lines) and the other for TE polarization (dashed lines). Transverse magnetic Dirac bands (dark red lines) are formed by the degeneracy of one monopolar (M) and two dipolar (D) modes manifested by the \(E_z \) component whereas transverse electric Dirac bands (light blue lines) are formed by the degeneracy of two dipolar (D) and one quadrupolar (Q) modes manifested by the \(H_z \) component (see figure inset). Note that, during optimization, the next closest bands are pushed further out to avoid disruptive anticrossings in the vicinity of the Dirac cones.

Power emitted by a time-harmonic current source \(\mathbf{J} \sim e^{i\omega t} \), proportional to the local density of states (LDOS), offers a convenient optimization framework for designing eigenmodes at a given frequency \(\omega \). Following the well-known principle that emitted power, \(f(\mathbf{E}, \mathbf{J}, \omega; \epsilon) = -\text{Re} \left[\int \mathbf{J}^\star \cdot \mathbf{E} \, d\mathbf{r} \right] \), is maximized when the source couples to a long-lived resonance \(\omega_0 \). Here, the electric field \(\mathbf{E} \) is simply the solution of the steady-state Maxwell equation, \(\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} - \omega^2 \epsilon(\mathbf{r}) \mathbf{E} = i\omega \mathbf{J} \). The goal of TO is to discover the dielectric profile \(\epsilon(\mathbf{r}) \) that maximizes \(f \) for any given \(\mathbf{J} \) and \(\omega \). In what follows, we judiciously choose \(\mathbf{J}(\mathbf{r}) \) and the symmetries of the unit cell to construct PhCs with a variety of intriguing spectral features. In particular, we apply TO to design six accidentally degenerate modes of monopolar...
FIG. 2. (a) Configuration of the prism test designed to illustrate effective zero index behavior for non-binary (b) and binary (e) designs with dual polarization Dirac cones (DPDC). FDTD analysis of the DPDC structures and their farfield patterns through the prism test show orthogonally emerging beams at the prism facet ($\theta = 0$), validating the effective zero index behavior for both TM- and TE-polarized waves incident on non-binary (c) and binary (f) designs. Retrieved TM and TE effective indices for non-binary (d) and binary (g) designs.

FIG. 3. Band structure showing TE (blue) and TM (red) DCs at two separate frequencies. Inset shows the unit cell of the optimized structure with dual-wavelength DCs. Also shown are the effective indices of the structure at the Γ point, illustrating the expected zero-index behavior at both frequencies.

(M), dipolar (D) and quadrupolar (Q) profiles (inset of Fig. 1) that transform according to A and E irreducible representations of the C_{4v} point group and which, in turn, give rise to conical dispersions in the vicinity of their degeneracy [27,28]. We emphasize that designing such a six-fold degeneracy poses a significant challenge for conventional design and even for sophisticated, heuristic optimization algorithms such as particle swarms, simulated annealing, or genetic algorithms [29-31], but can be susceptible to efficient gradient-based TO techniques, in combination with a proper problem formulation.

Figure 1 shows a topology-optimized PhC unit cell and its associated band structure, which exhibits two overlapping DCs at Γ point, one with transverse electric (TE) and the other with transverse magnetic (TM) polarization. Within the DPDC, TM Dirac bands are formed by the degeneracy of one monopolar (M) and two dipolar (D) modes whereas TE Dirac bands are formed by the degeneracy of two dipolar (D) and one quadrupolar (Q) modes. The optimized structure consists of high dielectric regions ($\epsilon_r = 5.5$), typical of common materials such as silicon nitride or titania, in a background of air ($\epsilon_r = 1$). Intermediate permittivities, $\epsilon_r \in (1, 5.5)$, are also seen as a result of fine-tuning the necessary modal frequencies to ensure a perfect overlap. The resulting gradient-index PhC has altogether six DPDC modes whose frequencies are degenerate to within 0.1%, an accuracy limited only by numerical resolution. Below, we also analyze the completely binary version of the optimized design (obtained by applying threshold projection filters [32] during the optimization process) whose band structure shows similar spectral features albeit with a somewhat spoiled degeneracy due to a small frequency gap of $\sim 1\%$ (not shown). We note that an approach to realize DPDCs and polarization-independent zero-index behavior was recently proposed [33], which necessitates the use of complex meta-crystals based on patterning an anisotropic elliptic metamaterial. In contrast, we identify DPDCs by virtue of unconventional geometries that can be imprinted on simple ordinary isotropic dielectrics.
DCs at the center of the Brillouin zone correspond to zero-index behavior when the appropriate homogenization criteria are met \[1,3\]. We perform full-wave FDTD analysis on our DPDC structures and show that they indeed exhibit various zero-index characteristics. One characteristic of a zero-index medium (ZIM) is observed in the so-called “prism” test \[3\], where plane waves normally incident on a facet of a zero-index prism emerge at right angle from another facet. Alternatively, one can also simulate the complex transmission and reflection coefficients of the zero-index medium, from which effective constitutive parameters are extracted \[1,3\]. Figure 2 shows FDTD analyses of two versions of DPDC structures, a gradient-index version (Fig. 2b) and a completely binary version (Fig. 2e). As shown in Figure 2(a), we perform a prism test by illuminating one side of a 45-45-90° triangular region made up of DPDC unit cells and then by measuring the far-field patterns emerging out of the diagonal (hypotenuse) facet. Note that \(\theta\) is the refraction angle between the direction of the emerging beam and the facet normal. Figure 2(c,f) show smooth Gaussian beam profiles in the far field with the refraction angles crossing zero around the Dirac-cone wavelengths for both TE and TM polarizations. Index retrievals (Fig. 2d,g) also confirm the zero-index behavior with the effective index crossing \(n = 0\) between 1.6−1.7 \(\lambda/a\). It must be noted that in our structures, zero-index behavior is only observed for normal incidence; illumination at oblique incident angles excite modes which do not exhibit zero-index behavior, as is the case for most Dirac-cone zero-index media \[34\]. Arguably, the optimally fine-tuned gradient-index structure shows better performance than the completely binary version since, in the former, the zero-index crossing is perfectly linear and virtually degenerate for both polarizations whereas, in the latter, the crossings are separated by about 1% and real part of the effective index shows a constant zero value while the imaginary part depicts a bump around the zero crossing, which correspond to a small bandgap near the Dirac-point frequency \[3\].

Nevertheless, the binary structure clearly features a range of wavelengths where near-zero-index behavior is observed for both polarizations, which makes it a realistic candidate for applications.

Dual-frequency Dirac Cones.— We also report on a structure (Fig. 3–Inset) with TE and TM DCs separated in frequencies, each showing zero-index behavior. The material platform in this case is chosen to be \(\epsilon_r \approx 12.5\) (silicon, III-V semiconductors) in air. In this structure, both DCs are formed by degenerate monopole and dipole modes. Note that the TE DC has a frequency 60% greater than that of the TM DC, making the structure a potential candidate for applications in nonlinear optics, requiring phase matching for efficient wavelength conversion \[35\]. Retrieved effective index (Fig. 3–Right) shows that both DCs exhibit zero-index behavior at normal incidence. Note that those structures exhibit very low losses (small imaginary parts of effective index) around the two DC frequencies.

Dirac Cones at the K point.— To demonstrate the versatility of our approach, we proceed to design DPDCs on a hexagonal lattice with symmetry properties distinct from those found on a square lattice. In particular, we focus on the K point of the Brillouin zone, where two dipolar eigenmodes that transform according to the \(E\) irreducible representation of \(C_{3v}\) point group form a deterministic DC, i.e, a DC that arises as a consequence of the symmetry of the lattice \[27,28\]. We show that we can overlap two such DCs, one having TM polarization and the other having TE polarization, thus restoring electromagnetic duality \[12\] in the vicinity of the four-fold degenerate Dirac point. Specifically, we employ the LDOS TO formulation to design degenerate TM and TE dipolar modes while imposing \(C_{3v}\) symmetry via suitable transformations which ensure the concurrence of the corresponding degenerate partner for each polarization, leading to DPDCs.

Figure 4 shows complex geometries discovered by TO and
the corresponding band structure with overlaid TE and TM DCs at K point. The gap between the two Dirac points is as small as $< 0.1\%$, only limited by numerical discretization errors. To our knowledge, this structure is the first proof-of-principle 2D design, based on ordinary isotropic dielectric materials, that hosts overlaid TE/TM DCs at a non-Γ point of a PhC. Moreover, this structure stands in contrast to more sophisticated recent designs using 2D metacrystals [12] or 3D hexagonal PhC [21]. Since DPDCs at the K point of a hexagonal lattice are important precursors to non-trivial topological states [11][12][21], our method suggests an alternative precursor from which one may realize a so-called photonic topological insulator (PTI). Since our focus here is realizing DPDCs, we will not pursue making a PTI here. However, it is worth mentioning that there are well-known techniques to introduce non-trivial topological bandgaps into DPDCs based on suitable bi-anisotropic perturbations, such as by introducing off-axis propagation $k_z \neq 0$, by systematic reduction of mirror symmetry, or by modifications that mix TE and TM polarizations while preserving the pseudospin distinction [12]. Although the TO-discovered geometry might be quite challenging to fabricate due to the existence of pixel-thin hairy features, we note that these features do not indicate a fundamental limitation of our technique but are an artifact of underlying image-transformation steps which impose undue constraints on the optimization process. In the supplement, we discuss such drawbacks as well as possible ways to mitigate them.

Conclusion and remarks.— While the optimized structures we have presented might prove challenging, though not impossible, to fabricate at visible or near-infrared frequencies, they can be readily realized at mid- to far-IR as well as microwave frequencies via existing technologies such as computerized machining, 3D printing, laser cutting, additive manufacturing, or two-photon lithography [36][38]. Furthermore, thin isolated features which typically beset topology-optimized designs can be removed by a variety of regularization and averaging techniques [15].

The appearance of such features indicates an optimization process that is severely constrained by the design requirements of realizing TE and TM modes with the same modal profile at the same frequency. The fundamental issue underlying such a design is that in a generic structured isotropic 2D medium, TM bands tend to be at lower frequencies than TE bands, breaking the so-called electromagnetic duality. While we have shown that our TO formulation is capable of restoring this duality and finding DPDCs on a 2D lattice, this comes at the expense of a highly irregular structure which needs to be fine-tuned with thin sensitive features. In contrast, we surmise that three-dimensional platforms will offer even greater flexibility. For example, it is known that TM modes tend to experience effectively different index of refraction relative to TE modes in 3D PhC slabs, e.g. depending on whether the PhC geometry consists of holes or pillars [39]. In future work, we will consider optimization in full 3D geometries, which we expect will open up even more exciting opportunities for new structural designs in the fields of metamaterials, metasurfaces, and topological photonics.

Acknowledgements.— The authors thank Philip Camayd-Muñoz and Orad Reshef for discussions. This work was partially supported by the Air Force Office of Scientific Research under Contract No. FA9550-14-1-0389, by the National Science Foundation under Grants No. DMR-1454836 and DMR-1360889, and by the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant No. DMR-1420541. Z. Lin is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1144152.

* These authors contributed equally to this work.

† loncar@seas.harvard.edu

