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Abstract: We propose an on-chip gyroscope based on non-

linear multiresonant optics in a thin film 𝜒 (2) resonator

that combines high sensitivity, compact form factor, and

low power consumption simultaneously. We theoretically

analyze a novel holisticmetric – Fisher Information capac-

ity of a multiresonant nonlinear photonic cavity – to fully

characterize the sensitivity of our gyroscope under fun-

damental quantum noise conditions. Leveraging Bayesian

optimization techniques, we directly maximize the non-

linear multiresonant Fisher Information. Our holistic opti-

mization approach orchestrates a harmonious convergence

of multiple physical phenomena – including noise squeez-

ing, nonlinear wave mixing, nonlinear critical coupling,

and noninertial signals – all encapsulated within a single

sensor-resonator, thereby significantly augmenting sensitiv-

ity. We show that ∼470× improvement is possible over the

shot-noise limited linear gyroscope with the same footprint,

intrinsic quality factors, and power budget.

Keywords: optical gyroscope; nonlinear optics; quantum

photonics; Bayesian optimization; Fisher Information

1 Introduction

Gyroscopes are critical components of an inertial naviga-

tion system for augmenting the GPS guidance or salvaging
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GPS-denied operational environments [1]. In an optical

gyroscope, the rotation rate is measured through the phase

shift between two counter-propagating beams in an optical

loop. This approach was first proposed by Sagnac in 1913

[2], [3] and soon different types of optical gyroscopes were

developed [4], [5]. Careful studies have been performed on

the sensitivity and the quantum noise of these gyroscopes

[6], [7], and remarkable levels of sensitivity (<0.001◦/h)

have been achieved in state-of-the-art discrete component

optical gyroscopes, including fiber optic gyroscopes (FOG)

[8]–[10], ring laser gyroscopes (RLG) [11], atom-laser gyro-

scope [12], and optical cavity gyroscopes [13]–[15]. However,

bulky components and relatively high power consumption

remainmajor roadblocks to further exploiting discrete com-

ponent optical gyroscopes. On the other hand, on-chip opti-

cal gyroscopes [16]–[20] exhibit great potential for fully

integrated inertial navigation platforms (free of fragilemov-

ing parts) and can outperform their discrete component

counterparts in size, weight, power consumption, maneu-

verability, manufacturing scalability, robustness, and the

ability to operate in harsh environments. However, on-chip

gyros are yet to reach sensitivity levels smaller than 1◦/h.

This is due to fundamentally limited optical path lengths

even in ultra-high quality factor resonators [16], leaving

dubious prospects for further improvements via increasing

resonator size or quality factors. To address the challenge

of this seemingly intrinsic trade-off between sensitivity and

compactness, novel physics and designs have been inves-

tigated, including exceptional point sensing [21], [22], slow

light [23], [24], dispersive enhancements [25], [26], dynamic

thermal drift cancellation [15], [27], and nuclear magnetic

resonance [28].

Meanwhile, driven by the emerging trend of quantum

technologies [29]–[31], quantum light sensors have been

identified as a promising option that can extend the fun-

damental sensitivity limits beyond the shot noise regime

[32]–[34]. These ideas were reinforced by decades of devel-

opment and analysis that lead to the construction of very

large laser interferometers with extreme sensitivity that

is capable of detecting gravitational waves from remote
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cosmological events. Recently, squeezed light was used in

the LIGO in the US and the VIRGO in Italy to substan-

tially improve the sensitivity of the observing runs that

happened late in April 2019 [35], [36]. On the other hand,

recent advances in nanofabrication, integration, and pack-

aging of ultra-coherent laser sources [37], low-loss pho-

tonic circuits [38], [39], and highly efficient photo-detectors

[40] have opened up exciting opportunities for realizing

fully on-chip quantum devices. Along this trend, we iden-

tify on-chip optical gyroscopes, operating under fundamen-

tal quantum noise conditions, as promising candidates for

next-generation rotation sensing.

In this paper, we theoretically introduce a new type

of on-chip nonlinear multiresonant gyroscope in integrated

thin film resonators with strong quadratic 𝜒 (2) nonlineari-

ties that simultaneously achieve high sensitivity, high com-

pactness, and lowpower consumption. Instead of externally

injecting squeezed states of light into the gyroscope [33],

[41], our gyroscope design fuses nonlinear wave mixing,

noise squeezing and cancellations, and noninertial signal

accumulation inside the same sensor-resonator, enabling

≳ 470× improvements in gyroscopic sensitivity over the

linear shot noise limit. In our scheme, classical laser light

(coherent state) is injected into a doubly resonant𝜒 (2) cavity,

and output light is measured at the fundamental (𝜔1) and

second harmonic frequencies (𝜔2 = 2𝜔1). The sensitivity of

the gyroscope is evaluated by Fisher Information (FI) [42],

[43], and the latter is maximized by Bayesian optimization

[44]. Various parameter regimes associatedwith both funda-

mental and second harmonic injection schemes were inves-

tigated, which reveal correlated noise suppression and sen-

sitivity enhancements via parametric oscillations and criti-

cally sensitive threewavemixing dynamics.Wepredict that,

under quantum noise conditions, a minimum detectable

rotation rate (MDR) of<0.01 ◦/h canbe achievedusing a thin

film lithium niobate (TFLN) ring resonator with a diameter

of 20 mm, intrinsic quality factors Qi2 = 106 at the second

harmonic wavelength (795 nm), Qi1 = 107 at the fundamen-

tal wavelength (1590 nm). We discuss the scope, validity,

and implications of our approach and results, while the key

sensitivity enhancement factors are summarized in Table 1

of Section 4.

2 Gyroscopic model

2.1 Linear resonant gyroscope as a baseline

We first review a basic interferometric scheme probing the

gyroscopic shift of a linear resonant cavity, as outlined in

Figure 1. We perform a quantum noise analysis similar to

Table 1: Optimal sensitivities of various injection schemes.

P (mW) P (mW) Q
c Q

c 𝛀min (
◦/h)

Linear 23.507 None 9.58 × 106 None 0.278

SHI None 23.507 1.018 × 105 5.462 × 105 .

Sensitivity enhancement factor: .×

Linear 0.000945 None 9.58 × 106 None 43.81

FFI None 0.000945 6.747 × 106 6.765 × 107 .

Sensitivity enhancement factor: .×

The bold values represent the optimal sensitivities and

the corresponding enhancement factors at each injection scheme.

b+

> >

PD PDb-i
Figure 1: The schematic of the linear micro-ring gyroscope. The input

and output light of the micro-ring cavity is injected at two waveguide

ports bin
1
(CW)/bin

1
(CCW) and bout

1
(CW)/bout

1
(CCW). The radiation losses

are expressed by the fictitious radiation channel cin
1
(CW)/cin

1
(CCW).

The output light is measured by homodyne detection.

Ref. [42] or Section 4 of Ref. [7]. Two identical counter-

propagating probes (seeded from the same on-chip laser)

are injected into the clockwise (CW) and the counterclock-

wise (CCW) modes of a ring resonator; at the exit, the two

probe fields are set to interfere via balanced homodyne

detection [45]. In the absence of rotation, the CW and the

CCW modes are degenerate and the exiting fields register a

vanishing differential photocurrent signal at the detection

setup [7]. Rotational motion induces a frequency splitting

proportional to the rotation rateΩ, which in turn induces a
phase difference between the outgoing CWandCCWprobes.

Subsequently, interference of the two probe fields gives rise

to a nonzero differential signal and the underlying Ω can

be measured. For conceptual simplicity, we assume that the

frequency of the probe laser is always locked to the degen-

erate frequency of the unperturbed gyro [7]. In principle,

this can be achieved by self-injection locking the laser to
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an independent rotation-insensitive cavity (such as a high-Q

spiral resonator [46]) having the exact same frequency as

the unperturbed gyro ring. It has been demonstrated [47]

that self-injection locking to a high-Q cavity can produce an

ultra-coherent integrated laser with a sub-Hertz linewidth;

therefore, we can readily approximate the laser state as a

coherent state. In the Heisenberg picture, the Hamiltonian

of a linear optical gyroscope is given by:

H =
∑

ℏ𝜔â†â+
∑

iℏ
𝜅

2
(b̂†â+ â†b̂)

+
∑

ℏ𝛽
(
â†
cw
âccw + â†

ccw
âcw

)
(1)

Then, we can derive the Heisenberg–Langevin

equations that the ring resonator gyro obeys [48]:

dâcw
dt

=
(
−𝜅
2
− 𝛾

2
+ i𝛿

)
âcw + i𝛽âccw +

√
𝜅b̂in

cw
+
√
𝛾 ĉin

cw

(2)

dâccw
dt

=
(
−𝜅
2
− 𝛾

2
− i𝛿

)
âccw + i𝛽âcw +

√
𝜅b̂in

ccw
+
√
𝛾 ĉin

ccw

(3)

where âcw and âccw are the annihilation operators for the

cavity CW and CCW modes excited by the injections b̂in
cw

and b̂in
ccw

, respectively. ĉin
cw

and ĉin
ccw

represent intrinsic loss

channels (such as radiative losses). 𝜅 and 𝛾 are the decay

rates for the coupling and the intrinsic losses. We approx-

imate Rayleigh-type back-scattering as a linear (conserva-

tive) coupling 𝛽 between CW and CCW modes inside the

cavity [16]. 𝛿 is the rotation-induced resonant frequency

shift due to the Sagnac effect. Here, we have assumed single-

photon normalization for each eigenmode so that â†â, for

example, represents the photon number operator inside the

cavity.

We denote ⟨Â⟩ = ⟨𝜓 |Â|𝜓⟩ as the usual notation for

computing the expectation value of a physical observable Â

with respect to the quantumstate |𝜓⟩. In the linear problem,
we will consider coherent states of the same amplitude bin

in the input waveguides and vacuum states in the intrinsic

loss channels for both CW and CCW light [7]. The input state

of the gyro is then given by |𝜓⟩ = |bin⟩cw|bin⟩ccw |0⟩cw|0⟩ccw.
The classical counterpart of the input operator b̂in is the

input amplitude of a coherent state in the feeder waveguide

and can be related to the input power P by the formula:

|bin|2 = ⟨b̂in†b̂in⟩ = P

ℏ𝜔
(4)

The output operators in the waveguides are given by

[7]:

b̂out
cw

= b̂in
cw

−
√
𝜅1âcw (5)

b̂out
ccw

= b̂in
ccw

−
√
𝜅1âccw (6)

The clockwise and counterclockwise signals are set to

interfere through a directional coupler/beam splitter with a

controllable phase shift 𝜙, followed by photodetection. The

signal incident on the photodetectors and the photocurrent

operators are then given by:

b̂+ =
(
b̂out
cw
ei𝜙∕2 + ib̂out

ccw
e−i𝜙∕2

)
∕
√
2 (7)

b̂− =
(
ib̂out
cw
ei𝜙∕2 + b̂out

ccw
e−i𝜙∕2

)
∕
√
2 (8)

î+ = b̂†+b̂+ (9)

î− = b̂†−b̂− (10)

We measure the differential current signal:

î = î+ − î− (11)

As a figure of merit, we will investigate the minimum

detectable frequency shift by calculating the ratio between

the standard variation of the measured differential current

and the derivative of the mean value of the current over the

rotation-induced frequency shift, as reported by Dowling in

1998 [12]:

𝛿min =

√
⟨î2⟩− ⟨î⟩2||||
𝜕⟨î⟩
𝜕𝛿

||||

||||||||𝛿=0
(12)

Since the resonant frequency shift due to the Sagnac

effect is given by 𝛿 = 2𝜋rΩ
𝜆n0

[7], the minimum detectable

rotation rate (MDR) is given by:

Ωmin =
𝜆n0
2𝜋R

√
⟨î2⟩− ⟨î⟩2||||
𝜕⟨î⟩
𝜕𝛿

||||

||||||||𝛿=0
(13)

where R and n0 are the radius and the refractive index of

the micro-ring. 𝜆 is the wavelength of the input light. We

emphasize that Ωmin is a holistic measure, which not only

considers the sensitivity of the noise-averaged photocurrent

with respect to Ω but also the variance of the measured

current signals due to noise (both are critical to correctly

characterizing the overall performance of the gyro; it has

been pointed out [49] that an analysis only of the photocur-

rent sensitivity could often lead to misleading conclusions).

If we ignore Rayleigh back-scattering 𝛽 = 0, we can

derive a simple closed-form expression for MDR in the lin-

ear gyroscope (LG):

ΩLG

min
=

√
2𝜆n0(𝜅 + 𝛾)2

64𝜋R𝜅
√
N

(14)
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where N = P

ℏ𝜔
is the incident number of photons per

unit time. ΩLG

min
is minimized at 𝜅 = 𝛾 , yielding MDRLG

min
=√

2cn0

8R
√
NQi

, where the intrinsic quality factor is defined by Qi =
𝜔

𝛾
. Note that Eq. (14) is only a simplification to illustrate the

simple sensitivity dependence of a linear gyroscope in limit

of vanishing back-scattering. We will fully take into account

back-scattering effects in our ensuing works. We note that,

in our analysis, we only consider fundamental quantum

noise: without loss of generality, we have assumed perfect

beam splitters and detectors external to the resonator, while

we do consider realistic losses inside the resonator. This

linear result will serve as a baseline comparison for our

later analysis of a newmode of gyroscope that relies on non-

linear interactions. Note that the scaling MDRLG
min

∼ 1√
NQi

recovers the familiar shot noise limit [12]. In addition, the 1

R

dependence in Eq. (14) indicates that a larger ring radius R

offers better sensitivity, which is one of the common control

knobs of classical linear optical gyroscope.

2.2 Nonlinear multiresonant quantum
photonics gyro

We now consider the gyroscopic operation of a doubly

resonant ring resonator with quadratic 𝜒 (2) nonlinearities

(Figure 2). Quadratic nonlinearities are well-known gen-

erators of correlations such as squeezing and entangle-

ment [50], [51]. Our nonlinear multiresonant gyro syner-

gistically leverages nonlinear dynamics, noise squeezing

and cancellations, and noninertial Sagnac effects in the

same sensor-resonator, to improve the gyroscopic sensitiv-

ity. Specifically, based on the Hamiltonian of the nonlinear

gyroscope:

H =
∑

ℏ𝜔i, jâ
†
i, j
âi, j +

∑
iℏ
𝜅i
2

(
b̂†
i, j
âi, j + â†

i, j
b̂i, j

)

+
∑

iℏ
𝜒

2

(
â†
1, j

2
â
2, j
− â2

1, j
â†
2, j

)

+
∑

ℏ𝛽i

(
â†
i,cw

âi,ccw + â†
i,ccw

âi,cw

)
(15)

we investigate the following Heisenberg–Langevin

equations:

dâ1,cw
dt

= −
(
𝜅1
2
+ 𝛾1

2
− i𝛿1

)
â1,cw + i𝛽1â1,ccw

+ 𝜒 â†
1,cw

â2,cw +
√
𝜅1b̂

in
1,cw

+
√
𝛾1ĉ

in
1,cw

(16)

dâ1,ccw
dt

= −
(
𝜅1
2
+ 𝛾1

2
+ i𝛿1

)
â1,ccw + i𝛽1â1,cw

+ 𝜒 â†
1,ccw

â2,ccw +
√
𝜅1b̂

in
1,ccw

+
√
𝛾1ĉ

in
1,ccw

(17)

> >> >

b1+ b1-i1

b2+ b2-i2

Figure 2: The schematic of the nonlinear micro-ring gyroscope.

The input light is injected at four waveguide ports bin
1
(CW)/bin

1
(CCW) and

bin
2
(CW)/bin

2
(CCW). The input/output and loss channels for the second

harmonic light are expressed by blue arrows. The output light is

measured by a joint measurement using the differential currents at both

output ports (bout
1

and bout
2
). The accuracy of the measurement is

determined by evaluating the Fisher Information of the output light.

dâ2,cw
dt

= −
(
𝜅2
2
+ 𝛾2

2
− i𝛿2

)
â2,cw + i𝛽2â2,ccw

− 1

2
𝜒 â2

1,cw
+
√
𝜅2b̂

in
2,cw

+
√
𝛾2ĉ

in
2,cw

(18)

dâ2,ccw
dt

= −
(
𝜅2
2
+ 𝛾2

2
+ i𝛿2

)
â2,ccw + i𝛽2â2,cw

− 1

2
𝜒 â2

1,ccw
+
√
𝜅2b̂

in
2,ccw

+
√
𝛾2ĉ

in
2,ccw

(19)

In these equations, the index j = 1, 2 in the field oper-

ators (â j, b̂ j, ĉ j) stands for the fundamental 𝜔1 and sec-

ond harmonic 𝜔2 = 2𝜔1 resonances. 𝜅 j and 𝛾 j are the

decay rates of the coupling and the intrinsic loss channels.

Rayleigh scattering rate between CW and CCW modes at

each resonance j is again characterized by 𝛽 j, which is

inversely proportional to the intrinsic quality factor at each

resonance j (Qij). The nonlinear coupling terms 𝜒 â
†
1
â2 indi-

cate a multi-photon process in which one incident photon

with𝜔2 breaks down into two photons of half the frequency

𝜔1 = 𝜔2

2
(parametric down conversion [52]), or its reverse,
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1

2
𝜒 â2

1
, indicating that two photons with 𝜔1 combine into

one photon with the double frequency 𝜔2 = 2𝜔1 (second

harmonic generation [53]). These are energy-conserving,

three-wave mixing processes, which preserve the funda-

mental commutation relations [54]. The rotation-induced

frequency shifts (𝛿1, 𝛿2) are different for each resonance,

have opposite polarity between CW and CCW modes, and

can be approximated by 𝛿2 = 2𝛿1 (since 𝛿 = 2𝜋rΩ
𝜆n0

[7]). Note

that here the material dispersion of the lithium niobate is

neglected because the index difference (n = 2.21 at 1590 nm

and n= 2.25 at 795 nm) can be compensated by engineering

the geometry dispersion [55]. In order to improve the accu-

racy of the model, however, the dispersion effect should be

taken into account in future exploration. The key parameter

in this model is the nonlinear modal coupling strength [48],

[56]:

𝜒 = 𝜖0
ℏ ∭

3𝜒 (2)(r)

4
√
2

u∗
1
(z, r, 𝜃)2u2(z, r, 𝜃)rdrd𝜃dz (20)

where u∗
1
(z, r, 𝜃) and u2(z, r, 𝜃) are the electric field profiles

(in polar coordinates) of the fundamental and the second

harmonic eigenmodes of the gyroscopic resonator. Given

that our sensor is a ring resonator of radius R, it is instruc-

tive to decompose 𝜒 into cross-sectional modal overlap 𝜁

and the remaining contributions. Following [57], we approx-

imate:

𝜒 ≈

√
ℏ𝜔2

1
𝜔2

𝜖02𝜋R

𝜁

𝜖1
√
𝜖2

3𝜒 (2)

4
√
2

(21)

𝜁 = ∬ u∗
1
(z, r)2u2(z, r)drdz

∬ |u∗
1
(z, r)|2drdz√∬ |u2(z, r)|2drdz

(22)

It is important to realize that the nonlinear Langevin

equations [48], [58] encode the time evolution of four cou-

pled infinite-dimensional quantum operators; as such, it is

very challenging to obtain an exact solution either analyti-

cally or numerically (we note that straightforward numer-

ical methods using a truncated Fock basis [59] are not fea-

sible because our system typically involves milli-watts of

optical power amounting to ∼1016 photons). However, at
milli-watt injection powers, quantum fluctuations can be

considered “small signals” compared tomuch stronger aver-

age field intensities at steady state, so that each operator

can be decomposed into a classical scalar-valued amplitude

and a fluctuation operator, e.g., â = 𝛼 + 𝛿â. The details of
calculating steady state solutions are included in the Sup-

plementary Material 1. The classical amplitude represents

a steady-state solution to the mean-field averaged Langevin

equations at the classical (large photon number) limit while

the “small-signal” fluctuation operator approximately obeys

the linearized Langevin equations in the vicinity of the

steady-state mean-field solution. Linearizing a nonlinear

steady state to study the fluctuations in its vicinity is com-

monly known as small-signal modeling in electronics engi-

neering [60]. In a similar spirit, the small-signal treatment of

the fluctuation operators in the Heisenberg–Langevin pic-

ture is a simple but effective approach widely accepted for

steady-state noise analysis in laser and nonlinear quantum

optics literature with experimental support [7], [61]–[64].

Theoretically, it is important to note that such an approach

is justified as long as the steady state we consider is a sta-

ble hyperbolic fixed point to which all nearby trajectories

converge, ensuring small fluctuations (Hartman–Grobman

theorem [65]). On the other hand, a more sophisticated

phase-space formalism, which employs quasi-probability

distributions, Fokker–Planck equations, and stochastic cal-

culus, can be used to study more complicated dynamics

such as large fluctuations at nonhyperbolic critical points

and self-pulsing (limit-cycle) solutions [66]. Using the small-

signal approximation, we can compute the differential pho-

tocurrent signals at both the fundamental and the second

harmonic resonances (see also Figure 2):

î1 = iA1

(
b̂out†
1,cw

b̂out
1,ccw

e−i𝜙1 − b̂out†
1,ccw

b̂out
1,cw

ei𝜙1

)
(23)

î2 = iA2

(
b̂out†
2,cw

b̂out
2,ccw

e−i𝜙2 − b̂out†
2,ccw

b̂out
2,cw

ei𝜙2

)
(24)

Here, A1 and A2 are constant factors determined by the

frequencies of the light and the responsivity of the photode-

tectors. ei𝜙1 and ei𝜙2 are the propagation phase shifts that

each output light experiences, which are determined by the

propagation distances after the output CW and CCW waves

are mixed. Therefore, by controlling the lengths of the out-

put waveguides, ei𝜙1 and ei𝜙2 are set to one here. Here, we

measure both î1 and î2 to extract maximal information out

of the nonlinear wave-mixing gyro.

The output of our nonlinear multiresonant gyroscope

is now characterized by a mean vector ⟨i⟩ and a covariance
matrix 𝚺:

⟨i⟩ =
(⟨î1⟩
⟨î2⟩

)
(25)

𝚺 =
⎛⎜⎜⎜⎝

⟨î2
1
⟩− ⟨î1⟩2 ⟨î1 î2⟩+ ⟨î2 î1⟩

2
− ⟨î1⟩⟨î2⟩

⟨î1 î2⟩+ ⟨î2 î1⟩
2

− ⟨î2⟩⟨î1⟩ ⟨î2
2
⟩− ⟨î2⟩2

⎞⎟⎟⎟⎠
(26)

Assuming that the joint probability distribution of the

measured photocurrents follow a bivariate Gaussian, we

can express the Fisher Information [43] of our gyroscope:
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I(𝛿) =
(
d⟨i⟩
d𝛿

)T

𝚺−1
(
d⟨i⟩
d𝛿

)
(27)

The details of the statistical analysis of the differential

currents are included in Supplementary Material 2. Then

the sensitivity is determined by Cramer–Rao bound [67]:

𝛿min =
1√
I(𝛿)

(28)

Similar to the linear gyroscope, here MDR is given by:

Ωmin =
𝜆n0
2𝜋R

𝛿min (29)

Before we provide further estimation for particular

gyroscope implementation, we want to offer a few remarks

on our modeling approach:

– In this paper, we have stuck to a Langevin description

of our nonlinear gyroscope, which takes into account

quantum noise through the Langevin fluctuation oper-

ator b̂ or ĉ in each coupling or dissipation channel (with

the rates determined by the fluctuation–dissipation

theorem), preserving the fundamental commutation

relations [48].

We note that while the Langevin form is widely

utilized in many experimental situations [57], more

sophisticated theoretical analysis, delineating the open-

system quantum dynamics [68], can be performed

using the density operator formalism and the Master

equation, which will be the subject of future investiga-

tions. In particular, our simple perturbative approach

restricts our solution to examine the quantum fluc-

tuations around a stable hyperbolic fixed point. On

the other hand, nonhyperbolic fixed points and non-

steady state attractors (such as limit cycles) require

more sophisticated nonperturbative treatment (while

their implications for correlations and sensing remain

unexplored). One such treatment involves expand-

ing the density operator in a nondiagonal coherent

state basis (so-called positive P representation), deriv-

ing a Fokker–Planck equivalent of the Lindblad Mas-

ter equation and simulating the associated stochas-

tic dynamics [48]. However, to the best of our knowl-

edge, Fokker–Planck equations corresponding to more

than two bosonic operators [66], [69] have not been

well studied; our nonlinear multiresonant gyroscope

is described by 4 coupled Langevin equations and will

lead to an 8 + 1 dimensional Fokker Planck equation,

which requires substantial computational resources

and will be the subject of future investigations.

– In our approach, we have assumed idealized sources

and detectors in order to simplify our gyroscopicmodel

to physically most crucial components and thereby to

unveil the fundamental information-theoretic limits (in

the same spirit as the analysis presented in Ref. [42]

or Section 4 of Ref. [7]). Future works will develop

more detailed models that can compute commonly

accepted experimental metrics such as the integration-

timedependent Allan deviation curve [70], for example,

by incorporating the quantum theory of photodetec-

tion [71], [72], which can explicitly take into account

photo-electron generation rates and detector integra-

tion times.

– Last but not least, we note that our present model

focuses on 𝜒 (2) processes to delineate their effects on

the gyroscopic sensitivity. A more thorough gyro model

may also consider 𝜒 (3) (Kerr-type self-modulation) non-

linearities, which may come into effect at ultra-high

quality factors and are found to limit the sensitivity of

the (otherwise) linear gyroscope [7], [16].Whilewe shall

take into account𝜒 (3) processes in detailed comprehen-

sive models in the future (see Section 5), we note that

Eqs. (16)–(19) are fully applicable tomaterial platforms,

such as thin film lithium niobate [56], [73], which pos-

sess prominent 𝜒 (2). Furthermore, unlike their linear

counterparts, resonators with 𝜒 (2) can be engineered

to exhibit negative Kerr shifts via cascaded second-

order effects [74], which can mitigate the intrinsic pos-

itive Kerr shift; we shall investigate such cancellation

schemes in our future works. On the other hand, we

would like to emphasize that 𝜒 (3) processes, including

even the Kerr shift, need not be treated as a nuisance,

but as extra complexities and additional degrees of

freedom that can be optimized to our advantage (see

Section 5). For example, it has been recently reported

that the bistability effects associated with the Kerr-shift

self-modulation can even enhance sensitivities under

appropriate sensing schemes [75], [76].

2.3 Thin film lithium niobate
as an implementation platform

Our nonlinear multiresonant gyroscope can be imple-

mented in any thin film material platform, including

LiNbO3 [73], AlN [77], SiC [78], GaAs [79], etc., which has

prominent 𝜒 (2). In this work, we consider thin film lithium

niobate (TFLN) as a particularly promising platform, as it

has gained widespread popularity for realizing quantum-

grade ultra-low loss photonic integrated circuits [80], [81].

Indeed, lithium niobate has been traditionally employed

in quantum optics applications as a nonlinear medium

for generating squeezed light and entangled photon states

[82], [83]. However, traditional LN crystals are bulky and
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Figure 3: The 3D schematic (not drawn to scale) of quasi-phase matching (QPM) achieved by periodic poling. Poled rings are used to form quasi-phase

matched structures. Semiconductor lasers [88] and photodetectors [89] are also integrated on the chip. The numerically simulated field profiles of

both the fundamental frequency (1590 nm) and the second harmonic (795 nm) cavity modes are shown in the inset.

suffer from relatively limited strength of light–matter inter-

actions (leading to very weak nonlinear coupling 𝜒 ∼
103 Hz in Eqs. (21)). Only recently, high quality wafer-scale

TFLNbecomeswidely available for realizing integratedpho-

tonic circuits with nonlinear and electro-optic functional-

ities [73]. Associated with large 𝜒 (2), low optical loss and

strong nanophotonic confinement [84], TFLN devices offer

orders of magnitude enhancements in nonlinear coupling

𝜒 ∼ 106 Hz [56].

Figure 3 shows the design of a TFLN ring resonator used

in our gyroscope. Note that feeder waveguides of different

dimensions, frequency cutoffs, and dispersion characteris-

tics can be designed to selectively couple to the fundamental

(1590 nm) and the second harmonic (795 nm) modes [85],

and their coupling rates can be further tuned by TFLN

electro-optics [86]. To realize strong nonlinear coupling 𝜒

between the two resonances, two zeroth-order transverse

electric eigenmodes (TE00) can be (quasi-) phase-matched

[56] via periodic poling [87] that achieves crystal domain

inversion, leading to periodically varying nonlinear sus-

ceptibility 𝜒 (2), which compensates wave vector mismatch

between the fundamental and the second harmonic modes

k𝜒 = k(𝜔2)− 2k(𝜔1) [56]. Apart from the phase-matched

resonator itself, a fully integrated optical gyroscope can

be implemented in TFLN, incorporating flip-chip bonded

semiconductor lasers [88] and heterogeneously integrated

uni-traveling carrier photodetectors [89]. Furthermore, we

note that TFLN comes with unique electro-optic control

capabilities [73] which can be used for tuning resonator

parameters such as the coupling rates to the waveguides

[90], managing long-term temperature stability, canceling

thermal drifts and electronic noise [15], [91], and perform-

ing signal processing [92]. In our gyroscopic model, intrin-

sic losses 𝛾 and back-scattering rates 𝛽 should be treated

as “fixed” parameters, which depend on the experimen-

tally feasible characteristics of a particular implementa-

tion platform, such as residual material losses and surface

roughness due to fabrication imperfections. In thin film

lithium niobate, intrinsic quality factors reaching ∼108
have been demonstrated [93], and we expect proportion-

ate back-scattering rates with the same order of magni-

tude. It is important to realize that, apart from 𝛾 and 𝛽 ,

almost all other parameters can be designed, engineered,

and optimized, including injection powers, coupling rates,

resonator radius, resonator waveguide cross section and

dispersion, as well as quasi-phase matching processes. We

will utilize these parameters as degrees of freedom (DoFs)

in optimizing the Fisher Information and, hence, the mini-

mum detectable rotation (MDR) of our nonlinear multireso-

nant gyroscope. While any optimization algorithm can be

employed, gradient-free global optimization methods are

most suitable for a relatively low-dimensional problem like

our two-resonance gyro (where about 5–10 DoFs can be

optimized). We will use Bayesian optimization, a simple but

powerful machine-learning–based optimization algorithm,

which requires relatively few function evaluations (as com-

pared to other heuristic methods such as simulated anneal-

ing and evolutionary algorithms [94], [95]) and has been

observed to be particularly effective for optimizing ∼20
DoFs [44].

3 Results

Using Bayesian optimization algorithm, we holistically

maximize the nonlinear multiresonant Fisher Information

with respect to injection powers and coupling Q’s. In our

optimized designs, the operational wavelengths (of the

input/output light) are fixed at 𝜆1 = 1590 nm and at 𝜆2 =
795 nm. The material property of TFLN is taken from the lit-

erature [84]: the refractive index is n = 2.2while the second-

order nonlinear susceptibility is 𝜒 (2) = 30 pm/V. The intrin-

sic quality factors are fixed at Qi1 = 107 for the 1590 nm

and Qi2 = 106 for the 795 nm. The back-scattering rates for
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both cavity modes are assumed to be 𝛽1 = 5.4 × 104 Hz and

𝛽2 = 5.4 × 105 Hz; these values are inferred by adjusting the

literature-reported values [16] to the intrinsic quality factors

Qi of our TFLN platform. We have also fixed the radius of

the resonator at R = 20 mm as well as the cross-sectional

dimensions of the resonator waveguide (1.2 μm width ×
0.6 μm thickness) and the fabrication side wall angle of 75◦,

leading to a cross-sectional area of 0.8 μm2. The two TE00

modes have phase mismatch of 1.354 μm−1, which can be

compensated by poling with a period of 4.64 μm. Based on
Eq. (21), the quasi-phase matched 𝜒 (2) [56], and the numer-

ically simulated modal overlapping factor 𝜁 = 1.18∕μm,
we calculated the nonlinear coupling strength 𝜒 = 1.26 ×
106 Hz, which is independent of the injection schemes. The

rest of the parameters, including the injection powers P1
and P2 at the fundamental and the second harmonics as

well as the quality factors Qc1 and Qc2 due to waveguide

couplings, are to be determined by Bayesian optimization.

Wewill investigate gyroscopic performance under different

injection schemes including (1) coherent state input at the

second harmonic (𝜆2), (2) coherent state input at the sub-

harmonic (𝜆1), and (3) coherent state inputs at both second

and subharmonics (𝜆1 and 𝜆2).

3.1 Optical parametric oscillator gyro
(coherent injection at second harmonic)

First, we study the performance of an optical parametric

oscillator gyroscope under the coherent injection at the

second harmonic frequency. As shown in Figure 4(a), clas-

sical laser light with a wavelength 𝜆2 = 795 nm is injected

fromopposite directions from thewaveguide ports bin
2,cw

and

bin
2,ccw

,while no light is injected from thewaveguide port bin
1,cw

or bin
1,cw

, i.e., P1 = 0. The carefully phase-matched fundamen-

tal and second harmonic modes facilitate parametric down

conversion, in which one photon with higher frequency

(shorter wavelength 𝜆2) breaks down into two photons with

half the frequency (longer wavelength 𝜆1 = 2𝜆2) [48]. Using

Bayesian optimization, we identify a high sensitivity regime

in the 3D parameter space (P2,Qc1,Qc2). Figure 4(b) shows
Q
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(×105 )

P2 (mW)

Ωmin (°/h)
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Figure 4: The second harmonic injection scheme. (a) The schematic of the second harmonic injection scheme. The input light is only injected at the

second harmonic (blue arrow). (b) 2D density plot of the sensitivity at second harmonic injection. The sensitivity (MDR) is expressed as a function of the

input power P2 and the quality factor due to coupling loss of the second harmonic cavity mode Qc2. (c) 1D plot of the sensitivity of the second harmonic

injection scheme (blue) and the standard linear gyroscope (red) at optimal Qc in terms of the input power. (d) 1D linear plot of the mean differential

current of the output light at fundamental frequency (blue), second harmonic (green), and the standard linear gyroscope (red).
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a 2D density plot of a small-MDR, high-sensitivity regime

(0–1.7◦/h), as a function of P2 and Qc2. Note that the opti-

mization only considers P2 > 14.05 mW, a power threshold

belowwhich the steady-state solutions of the systembecome

unstable [58]. In particular, the steady states of the OPO gyro

are obtained from a set of nonlinear dynamical equations

described in Ref. [58]. At second harmonic injection, the

threshold power is given by Pc = ℏ𝜔2(𝜅1+𝛾1)2(𝜅2+𝛾2)2
16𝜅2𝜒

2 = 14.05

mW. This is the power threshold below which there only

exists zero subharmonic field solution and abovewhich two

stable solutions with nonzero subharmonic fields exist. This

threshold also marks the onset of parametric oscillations.

High sensitivity is observed over a sizable parameter range,

not at an isolated singularity. To elucidate the sensitivity

enhancement, Figure 4(c) compares the MDR of our OPO

gyro (solid blue line) against that of a standard linear gyro

(solid red line) with the same footprint and intrinsic quality

factor. The optimal coupling factors for the OPO gyro are

Qc1 = 1.018 × 105 and Qc2 = 5.462 × 105, both discovered by

Bayesian optimization. Meanwhile, the performance of the

linear gyro is optimized at Qc1 = 9.58 × 106, which is close

but not exactly equal to Qi1 = 107, considering the influence

of the small but nonzero back-scattering (see Eq. (14)). As the

input power is increased from 20 mW to 30 mW, the MDR

of the OPO gyro drops from ∼0.42◦/h down to near zero

and rises back to ∼1.21◦/h with a local minimum ∼0.004◦/h
at the optimal power of P2c = 23.507 mW, corresponding to

an optimal sensitivity point. Meanwhile, the MDR of the

linear gyroscope remains>0.245 ◦/h. Therefore, at the opti-

mal sensitivity point, the OPO gyro is ∼ 62.3× more sen-

sitive than the linear gyro for the same injection power,

resonator size, and intrinsic quality factors. We also plotted

the mean current values as a function of the rotation rate

Ω at different frequency outputs in Figure 4(d), showing

that the output signals of our nonlinear gyro has a stronger

dependence on the rotation rate than that of the linear gyro.

3.2 Coherent injection at the fundamental
frequency

We also investigated the gyroscopic performance of our

nonlinear resonator under a fundamental frequency injec-

tion scheme. As shown in Figure 5(a), light at input

Q
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Figure 5: The fundamental frequency injection scheme. (a) The schematic of the fundamental frequency (subharmonic) injection scheme. The input

light is only injected at the fundamental frequency (red arrow). (b) 2D density plot of the sensitivity at the fundamental frequency injection scheme.

The sensitivity (MDR) is expressed as a function of the input power P1 and the quality factor due to coupling loss of the cavity mode Qc1. (c) 1D plot of

the sensitivity of the fundamental frequency injection scheme (blue) and the standard linear gyroscope (red) at optimal Qc in terms of the input power.

The inset shows the magnified plot of the critical region. (d) 1D linear plot of the mean differential current of the output light at fundamental frequency

(blue), second harmonic (green), and the standard linear gyroscope (red).
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wavelength 𝜆1 = 1590 nm is injected from the waveguide

ports bin
1,ccw

and bin
1,cw

while P2 = 0, stimulating intracav-

ity up-conversion (two photons of lower energy are com-

bined to one photon of higher energy). The density plot

Figure 5(b) shows a low MDR regime in terms of P1 and

Qc1. Note that the steady-state solutions of the cavity modes

are stable only when P1 < 3.24 mW [58]. Via Bayesian opti-

mization, the optimal sensitivity point (MDR ∼0.093 ◦/h)

is found at P1 = 0.945 μW,Qc1 = 6.747 × 106,Qc2 = 6.675 ×
107, while the MDR of the linear gyro remains elevated at

∼44◦/h, leading to∼471.3× improvement in sensitivity over

a linear gyro with the same power, footprint, and intrin-

sic Q. Importantly, the fundamental frequency injection

schememerges high sensitivity and lowpower consumption

together in a compact form, which shows great potential in

practical applications.

4 Discussion

Table 1 summarizes the maximal sensitivity enhancement

factors (over the linear baseline) that can be obtained in

multiple operational regimes over a wide range of critical

power requirements. Under the optimal second harmonic

injection at ≈23.5 mW, our nonlinear multiresonant gyro-
scope can be nearly 62.3×more sensitive than an optimized

linear gyro with the same radius, intrinsic quality factor,

and power budget, allowing for aminimum detectable rota-

tion (MDR) as small as 0.0044◦/h. Alternatively, even larger

enhancement factors (470×) can be obtained at lower pow-
ers under the fundamental injection scheme. It is important

to note that, in either of the fundamental or the second

harmonic injection scheme, we measure the output signals

at both frequencies in order to fully utilize the input pump

power (which gets converted into both harmonics), setting

up a fair comparison to a linear gyro under the same pump

power. For a more conservative comparison, onemay argue

for using dual inputs and outputs in the linear case. Aside

from the fact that having to use two different frequency

lasers can be disadvantageous, a simple calculation read-

ily shows that measuring two noninteracting resonances

in a linear gyro can offer only up to
√
2× improvement

(under the same power budgets) – in fact, much less than√
2 due to the smaller Qi2 – highlighting that nonlinear

effects are indeed indispensable for significant sensitivity

enhancements. Most importantly, the crucial insight we

have drawn from our investigations is to realize that multi-

ple resonances in a nonlinear resonator can be engineered

to reinforce each other through nonlinear wavemixing and

can be used as powerful degrees of freedom to optimize

sensitivities. This critical realization suggests an exciting

future direction: to generalize our gyroscope design from

just two resonances to many more nonlinearly interacting

resonances (see also Section 5), which may lead to even

better sensitivities and functionalities (approaching the ulti-

mate Heisenberg limit). We may further dissect the sensi-

tivity enhancement by analyzing the multiresonant Fisher

Information (Eq. (27)), which can be expanded to three

terms:

I(𝛿) = I1 + I2 + I12

=

(
d⟨î1⟩
d𝛿

)2
Δ2
1
− Δ2

12

Δ2
2

+

(
d⟨î2⟩
d𝛿

)2
Δ2

2
− Δ2

12

Δ2
1

+
2
(
d⟨î1⟩
d𝛿

)(
d⟨î2⟩
d𝛿

)

Δ12 −
Δ2
1
Δ2
2

Δ12

(30)

Each of these terms may be compared with the Fisher

Information of the linear gyro:

IL =

(
d⟨îL⟩
d𝛿

)2
Δ2
L

(31)

Here, Δ2
n
= ⟨î2

n
⟩− ⟨în⟩2 and Δ12 = ⟨î1 î2⟩+⟨î2 î1⟩

2
− ⟨î2⟩⟨î1⟩

are the variances and the covariance of the output differ-

ential currents. First, it is immediately obvious that the

Fisher Information of each injection scheme is dominated

by either I1 or I2, as shown in Table 2. To better understand

these terms,we further analyze the key quantities, themean

current sensitivities d⟨în⟩
d𝛿

, and the variances, against their

linear counterparts, in Table 3. For the second harmonic

injection, while themean current sensitivities are enhanced

compared to the linear counterpart, the main improvement

in I2 surprisingly comes from the noise reduction in Δ2
2
in

the second harmonic differential current (relative to Δ2
L
).

This reduction results from a 7.14 dB squeezing in the sec-

ond harmonic mode b̂out
2

(as opposed to the more typical

squeezing in the down-converted fundamental mode in the

weakly nonlinear regime [50]) as well as from additional

noise cancellations occurring in a strongly interacting non-

linear regime.

The fact that the device is operating in a strong non-

linear regime is evidenced by the observation that at the

critical optimal power, the second harmonic input is almost

completely depleted to down conversion and radiation,

Table 2: Fisher Information of various injection schemes.

I I I I I
L

SHI 1,653,744 1.765 ,, −0.266 427.3

FFI 3814.65 . 0.000085 0.078 0.017

The bold values represent the major contributing terms to the sensitivity

enhancement.
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Table 3: Statistical properties of the output differential currents of various injection schemes and the linear gyroscope.

(
𝝏⟨ ̂i1⟩

𝝏𝜹

𝝏⟨ ̂iL⟩

𝝏𝜹

)2 (
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𝝏𝜹
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2𝚫

L

2

𝚫12
2

𝚫2
2𝚫

L

2

SHI 1.153 0.343 278.61 8.79 × 10−5 5.34 × 10−13 1.69 × 10−6

FFI 13.53 0.025 6.12 × 10−5 5.04 0.023 2.89 × 10−7
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Figure 6: The photon number ratios ((a) and (c)) and the phase shifts ((b) and (d)) between the input/output light at all three injection schemes as

a function of the detuning between the cavity resonant frequency and laser frequency. Rij and 𝜓 ij are the photon number ratio and the phase shift

between the input (j) and the output (i) frequencies, where 1 stands for the fundamental frequency and 2 stands for the second harmonic.

Figure 6(a). Note that the emergence of nonlinear criti-

cal coupling points characterized by complete depletion of

injected power due to maximal frequency conversion has

been studied previously [96]–[101], [104]. Curiously, opti-

mization of the Fisher Information reveals that a nonlin-

ear multiresonant gyroscope also operates optimally in the

vicinity of such a point. In the case of fundamental injection,

both mean current sensitivity d⟨î1⟩
d𝛿

and the noise reduction

in Δ2
1
significantly contribute to the enhancement of I1. We

found that the noise reduction in Δ2
1
results from 4.8 dB

squeezing in the fundamental mode combined with addi-

tional nonlinear cancellations, again indicating a strongly

interacting nonlinear regime.More remarkably, we observe

that the larger improvement in d⟨î1⟩
d𝛿

stems from the more

sensitive nonlinear critical coupling with sharper detuning

transitions at the optimal injection power (Figure 6(c) and

(d)).

In our doubly resonant gyro, part of the noise reduc-

tion, observed in the strongly interacting nonlinear regime,

may be more intuitively understood by contrasting with

the noise characteristics of the linear gyro. In fact, it is

easy to show that the differential current noise may vanish,

Δ2
L
→ 0, even in a linear gyro at critical coupling (𝜅 = 𝛾)

in the limit of zero back-scatting (𝛽 → 0), characterized by
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the destructive interference between the out-going cavity

field
√
𝜅𝛼 and the incoming waveguide field b̂in [102], [103].

Of course, in this limit, the mean current derivative also

vanishes, d⟨îL⟩
d𝛿

→ 0, thus keeping the ultimate inferential

sensitivity finite, i.e., yielding the shot-noise limit ∼ 𝛾∕
√
P.

On the other hand, a finite back-scattering 𝛽 ≠ 0 spoils

the critical coupling condition in a linear gyro, because

a nonzero 𝛽 effectively detunes the cavity resonances by

lifting the degeneracy between the cw and the ccw modes,

leading to an elevated noise variance when 𝛽 is nonzero.

Such a deleterious effect of 𝛽 is mitigated in the nonlin-

ear gyro by virtue of injected power, which can effectively

“re-tune” the resonances (through the nonlinear coupling

terms) and partially restore the critical coupling condition,

thereby reducing the noise variance. On the other hand, this

partially restored nonlinear critical coupling condition is

tied to a critical power associated with (almost) perfect non-

linear frequency conversion [104]. Therefore, optimal noise

reduction is observed at the same critical power (the local

minimum in Figure 4(a) as well as in Figure 5(a)). We note

that noise reductions have been reported in different non-

linear systems [96]–[101]. Future works will pursue an in-

depth comparison and understanding of our results in the

context of prior reports on nonlinear noise cancellations.

5 Summary and outlook

We have introduced a new type of nonlinear multiresonant

quantum photonic gyroscope that simultaneously achieves

high sensitivity, high compactness, and low power con-

sumption. Our analysis shows that, the gyroscope sensitiv-

ity enhancement stems from a multitude of effects, includ-

ing enhanced mean current sensitivity, noise squeezing,

and nonlinear noise cancellations. Specifically, we analyzed

and optimized the gyroscope sensitivity of a doubly reso-

nant 𝜒 (2) cavity, revealing that, under quantum noise con-

ditions, ≳ 470× enhancement is possible over the classi-

cal shot noise limit. A maximum sensitivity of 0.0044◦/h

has been achieved at an input power of 23.507 mW at the

second harmonic injection, exhibiting comparable sensi-

tivity performance and much lower power consumption

than state-of-the-art FOGs (Boreas D90: 0.001◦/h, 12 W) and

RLGs (Honeywell GG1320AN: 0.0035◦/h, 1.6 W) [105], [106].

In addition, our design operates under classical laser injec-

tion (which can be integrated on the same chip as the

gyro) and does not require complex external quantum

light sources. We highlight that our current design, which

uses two resonances, represents only an elementary step

and a relatively simple example. In future works, we will

develop a comprehensive inertial sensing paradigm, where

a synergistic amalgamation of both quadratic 𝜒 (2) and

cubic 𝜒 (3) nonlinearities, along with multiple intermixing

resonances, mutually reinforced Sagnac shifts, co-arising

noise squeezing and cancellations, electro-optics dynami-

cal control and geometrically induced anomalous disper-

sion effects, can unleash extraordinary complexities and

freedoms, which can be fully exploited by state-of-the-art

optimization techniques [107]–[110] in order to identify

unprecedented regimes for gyroscopic operation and sen-

sitivities. A full incarnation of our gyroscope design can be

described by a Heisenberg–Langevin system of the form (or

an equivalent density-operator Master equation [66]):

dâ
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=
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for a selected set of carefully phase-matched and disper-

sion-engineered resonances {𝜔 j, j = 1,… ,N}. Here,

𝛿𝜇(Ω), 𝜇 ∈ {cw, ccw}, is the rotation-dependent Sagnac

shift in the CW or CCW mode at each resonance. The func-

tions f (2) and f (3) are polynomials of the annihilation and

creation operators, representing all possible three-wave

mixing and four-wave mixing interactions between the

selected resonances; these processes include sum and

difference frequency generations of different orders

and combinations as well as Kerr-variety self-phase and

cross-phase modulation, and even cascaded processes [111].

It is important to note that the strengths of different f (2) and

f (3) terms are determined by nonlinear coupling factors [57],

which characterize the field concentration and nonlinear

overlaps of the modes of the photonic resonator and can

be computed from nanophotonic simulations. Therefore,

on-chip structural parameters, ranging from a few simple

shape parameters to entire permittivity distributions, can

serve as design degrees of freedom [112], by which we can

engineer and optimize the different nonlinear processes

(e.g., their relative contributions). The outputs of this

multiresonance system are collected bymultiple waveguide

ports and are set to passively interfere with each other

and/or go through active electro-optics pulse processing

(readily achievable on a TFLN platform [73]) before arriving

at multiple photodetectors to yield multiple photocurrent

signals i = {î1,… , îM}. From these multi-variable
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(vector-valued) measurements, one can perform deep

inferential analysis (such as advanced Bayesian computing

[113]) to deduce the underlying noninertial motion; the

sensitivity of the entire process can be characterized by

an end-to-end computation of Fisher Information, which

will serve as an optimization figure of merit. We recognize

tremendous opportunity in analyzing and optimizing such

a system with increasing levels of mathematical and com-

putational vigor, starting from steady-state analysis,

small-signal modeling, classical stochastic simulations,

to the nonperturbative phase-space apparatus involving

positive P-representations, Fokker–Planck equations, and

stochastic calculus [48], [66], from few-parameter deter-

ministic global optimization [108], [114], multi-parameter

Bayesian optimization [44] and evolutionary algorithms

[115], machine-learning assisted hybrid optimization

[116], and Monte Carlo gradient computations [110] to

billion-voxel topology optimization [117], inverse design

by adjoint optimization [118], and full end-to-end inverse

design [119] of the entire workflow from the underlying

resonator geometry to multi-variable inferential processes.

Experimentally, thin film lithium niobate (TFLN) continues

to offer the most suitable platform, which features

state-of-the-art on-chip frequency combs, pulse shaping,

frequency shifting, and ultra-fast signal processing

capabilities [81], [120]–[122].

Supplementary Material

The online version offers supplementary material on the

details of the derivations of the steady state solutions of the

nonlinear coupled equations and the algebra of the quan-

tum operators.
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