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We propose an on-chip all-optical gyroscope based on nonlinear multi-resonant cavity quantum
photonics in thin film χ(2) resonators—Quantum-Optic Nonlinear Gyro or QONG in short. The key
feature of our gyroscope is co-arisal and co-accumulation of quantum correlations, nonlinear wave
mixing and non-inertial signals, all inside the same sensor-resonator. We theoretically analyze the
Fisher Information of our QONGs under fundamental quantum noise conditions. Using Bayesian
optimization, we maximize the Fisher Information and show that ∼ 900× improvement is possible
over the shot-noise limited linear gyroscope with the same footprint, intrinsic quality factors and
power budget.

I. INTRODUCTION

Gyroscopes are critical components of an inertial nav-
igation system for augmenting the GPS guidance or sal-
vaging GPS-denied operational environments [1]. In an
optical gyroscope, the rotation rate is measured through
the phase shift between two counter-propagating beams
in an optical loop. This approach was first proposed by
Sagnac in 1913 [2, 3] and soon different types of op-
tical gyroscopes were developed [4, 5]. Careful studies
have been performed on the sensitivity and the quantum
noise of these gyroscopes [6, 7], and remarkable levels
of sensitivity (< 0.001◦/h) have been achieved in state-
of-the-art discrete component optical gyroscopes, includ-
ing fiber optic gyroscopes (FOG) [8–10], ring laser gy-
roscopes (RLG) [11], atom-laser gyroscope [12] and op-
tical cavity gyroscopes [13–15]. However, bulky compo-
nents and relatively high power consumption remain ma-
jor roadblocks to further exploiting discrete component
optical gyroscopes. On the other hand, on-chip optical
gyroscopes [16–20] exhibit great potential for fully inte-
grated inertial navigation platforms (free of fragile mov-
ing parts) and can outperform their discrete component
counterparts in size, weight, power consumption, maneu-
verability, manufacturing scalability, robustness and the
ability to operate in harsh environments. However, on-
chip gyros are yet to reach sensitivity levels smaller than
1◦/h. This is due to fundamentally limited optical path
lengths even in ultra-high quality factor resonantors [16],
leaving dubious prospects for further improvements via
increasing resonator size or quality factors. To address
the challenge of this seemingly intrinsic trade-off between
sensitivity and compactness, novel physics and designs
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have been investigated, including exceptional point sens-
ing [21, 22], slow light [23, 24], dispersive enhancements
[25, 26], dynamic thermal drift cancellation [15, 27] and
nuclear magnetic resonance [28].

Meanwhile, driven by the emerging trend of quantum
technologies [29–31], quantum light sensors have been
identified as a promising option that can extend the fun-
damental sensitivity limits beyond the shot noise regime
[32–34]. These ideas were reinforced by decades of de-
velopment and analysis that lead to the construction of
very large laser interferometers with extreme sensitivity
that is capable of detecting gravitational waves from re-
mote cosmological events. Recently, squeezed light was
used in the LIGO in the US and the VIRGO in Italy
to substantially improve the sensitivity of the observing
runs that happened late in April 2019 [35, 36]. On the
other hand, recent advances in nanofabrication, integra-
tion and packaging of ultra-coherent laser sources [37],
low-loss photonic circuits [38, 39] and highly efficient
photo-detectors [40] have opened up exciting opportu-
nities for realizing fully on-chip quantum devices. Along
this trend, we identify on-chip quantum light gyroscopes,
which combine high sensitivities, low power consumption,
and small form factors, as promising candidates for next-
generation rotation sensing.

In this paper, we theoretically introduce a new type of
on-chip quantum light gyroscope that exploits nonlinear
multi-resonant cavity quantum photonics in integrated
thin film resonators with strong quadratic χ(2) nonlinear-
ities. We call our gyroscope Quantum-Optic Nonlinear
Gyro or QONG in short. Instead of externally inject-
ing quantum states of light into the gyroscope [33], one
of the distinguishing features of our gyroscope is that it
fuses quantum-coherent nonlinear interactions, quantum
light generation and non-inertial signal accumulation in-
side the same sensor-resonator, enabling ≳ 900× im-
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provements in gyroscopic sensitivity over the linear shot
noise limit. In our scheme, classical laser light (coherent
state) is injected into a doubly-resonant χ(2) cavity, and
output light is measured at the fundamental (ω1) and
second-harmonic frequencies (ω2 = 2ω1). The sensitiv-
ity of the gyroscope is evaluated by Fisher information
(FI) [41, 42], and the latter is maximized by Bayesian
optimization [43]. Various parameter regimes associated
with both fundamental and second harmonic injection
schemes were investigated, which reveal correlated noise
suppression and sensitivity enhancements via paramet-
ric oscillations and critically sensitive three wave mixing
dynamics. We predict that, under quantum noise con-
ditions, a minimum detectable rotation rate (MDR) of
< 0.01 ◦/h can be achieved using a thin film lithium nio-
bate (TFLN) ring resonator with a diameter of 20 mm,
intrinsic quality factors Qi2 = 106 at the second har-
monic wavelength (795 nm), Qi1 = 107 at the fundamen-
tal wavelength (1590 nm). We discuss the scope, validity
and implications of our approach and results, while the
key sensitivity enhancement factors are summarized in
Table I of Section IIID.

II. GYROSCOPIC MODEL

A. Linear resonant gyroscope as a baseline

We first review a basic interferometric scheme probing
the gyroscopic shift of a linear resonant cavity, as outlined
in Fig. 1. We perform a quantum noise analysis similar to
Ref. [44] or Section 4 of Ref. [7]. Two identical counter-
propagating probes (seeded from the same on-chip laser)
are injected into the clockwise (CW) and the counter-
clockwise (CCW) modes of a ring resonator; at the exit,
the two probe fields are set to interfere via balanced ho-
modyne detection [45]. In the absence of rotation, the
CW and the CCW modes are degenerate and the exiting
fields register a vanishing differential photocurrent signal
at the detection setup [7]. Rotational motion induces a
frequency splitting proportional to the rotation rate Ω,
which in turn induces a phase difference between the out-
going CW and CCW probes. Subsequently, interference
of the two probe fields gives rise to a non-zero differen-
tial signal and the underlying Ω can be measured. For
conceptual simplicity, we assume that the frequency of
the probe laser is always locked to the degenerate fre-
quency of the unperturbed gyro [7]. In principle, this
can be achieved by self-injection locking the laser to an
independent rotation-insensitive cavity (such as a high-Q
spiral resonator [46]) having the exact same frequency as
the unperturbed gyro ring. It has been demonstrated
[47] that self-injection locking to a high-Q cavity can
produce an ultra-coherent integrated laser with a sub-
Hertz linewidth; therefore, we can readily approximate
the laser state as a quantum-mechanical coherent state.
In the Heisenberg picture, the ring resonator gyro obeys
the Heisenberg-Langevin equations [48]:

dâcw
dt

=
(
−κ
2
− γ

2
+ iδ

)
âcw + iβâccw +

√
κb̂incw +

√
γĉincw

(1)

dâccw
dt

=
(
−κ
2
− γ

2
− iδ

)
âccw + iβâcw +

√
κb̂inccw +

√
γĉinccw

(2)

where âcw and âccw are the annihilation operators for
the cavity CW and CCW modes excited by the injec-

tions b̂incw and b̂inccw respectively. ĉincw and ĉinccw represent
intrinsic loss channels (such as radiative losses). κ and
γ are the decay rates for the coupling and the intrinsic
losses. We approximate Rayleigh-type back-scattering as
a linear (conservative) coupling β between CW and CCW
modes inside the cavity [16]. δ is the rotation-induced
resonant frequency shift due to the Sagnac effect. Here
we have assumed single-photon normalization for each
eigenmode so that â†â, for example, represents the pho-
ton number operator inside the cavity.
We denote ⟨Â⟩ = ⟨ψ| Â |ψ⟩ as the usual notation for

computing the expectation value of a physical observable
Â with respect to the quantum state |ψ⟩. In the linear
problem, we will consider coherent states of the same am-
plitude bin in the input waveguides and vacuum states in
the intrinsic loss channels for both CW and CCW light
[7]. The input quantum state of the gyro is then given
by |ψ⟩ = |bin⟩cw |bin⟩ccw |0⟩cw |0⟩ccw. The classical coun-

terpart of the input operator b̂in is the input amplitude
of a coherent state in the feeder waveguide, and can be
related to the input power P by the formula:

|bin|2 = ⟨b̂in†b̂in⟩ = P

ℏω
(3)

The output operators in the waveguides are given by
[7]:

b̂outcw = b̂incw −
√
κ1âcw (4)

b̂outccw = b̂inccw −
√
κ1âccw (5)

The clockwise and counterclockwise signals are set
to interfere through a directional coupler/beam splitter
with a controllable phase shift ϕ, followed by photode-
tection. The signal incident on the photodetectors and
the photocurrent operators are then given by:

b̂+ =
(
b̂outcw e

iϕ/2 + ib̂outccwe
−iϕ/2

)
/
√
2 (6)

b̂− =
(
ib̂outcw e

iϕ/2 + b̂outccwe
−iϕ/2

)
/
√
2 (7)

î+ = b̂†+b̂+ (8)

î− = b̂†−b̂− (9)

We measure the differential current signal:
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î = î+ − î− (10)

As a figure of merit, we will investigate the minimum
detectable frequency shift by calculating the ratio be-
tween the standard variation of the measured differen-
tial current and the derivative of the mean value of the
current over the rotation-induced frequency shift, as re-
ported by Dowling in 1998 [12]:

δmin =

√
⟨̂i2⟩ − ⟨̂i⟩2∣∣∣∂⟨̂i⟩∂δ

∣∣∣
∣∣∣∣∣
δ=0

(11)

Since the resonant frequency shift due to the Sagnac
effect is given by δ = 2πrΩ

λn0
[7], the minimum detectable

rotation rate (MDR) is given by:

Ωmin =
λn0

2πR

√
⟨̂i2⟩ − ⟨̂i⟩2∣∣∣∂⟨̂i⟩∂δ

∣∣∣
∣∣∣∣∣
δ=0

(12)

where R and n0 are the radius and the refractive index
of the micro-ring. λ is the wavelength of the input light.
We emphasize that Ωmin is a holistic measure that con-
siders the deterministic sensitivity of the noise-averaged
photocurrent with respect to Ω as well as the variance
of the measured current signals due to noise (Both are
critical to correctly characterizing the overall sensitivity
of the gyro; it has been pointed out [49] that an analysis
only of the deterministic sensitivity could often lead to
misleading conclusions).

If we ignore Rayleigh back-scattering β = 0, we can
derive a simple closed-form expression for MDR in the
linear gyroscope (LG):

ΩLG
min =

√
2λn0(κ+ γ)2

32πRκ
√
N

(13)

where N = P
ℏω is the incident number of photons

per unit time. ΩLG
min is minimized at κ = γ, yielding

MDRLG
min =

√
2cn0

4R
√
NQi

, where the intrinsic quality factor is

defined by Qi =
ω
γ . Note that this is only an example to

illustrate the sensitivity dependence of the simplest linear
gyroscope without considering Rayleigh back-scattering,
which will be taken into account in the following dis-
cussions. We note that, in our analysis, we only con-
sider fundamental quantum noise: without loss of gen-
erality, we have assumed perfect beam splitters and de-
tectors external to the resonator, while we do consider
realistic losses inside the resonator. This linear quan-
tum result will serve as a baseline comparison for our
later analysis of a new mode of gyroscope that relies on
nonlinear quantum optical effects. Note that the scaling

MDRLG
min ∼ 1√

NQi
recovers the familiar shot noise limit

or the standard quantum limit [12]. In addition, the 1
R

dependence in Equation (13) indicates that a larger ring
radius R offers better sensitivity, which is one of the com-
mon control knobs of classical linear optical gyroscope.

b+

>

>

PD PD

b-
i

FIG. 1. The schematic of the linear micro-ring gyroscope.
The input and output light of the micro-ring cavity is injected
at two waveguide ports bin1 (CW) / bin1 (CCW) and bout1 (CW)
/ bout1 (CCW). The radiation losses are expressed by the fic-
ticious radiation channel cin1 (CW) / cin1 (CCW). The output
light is measured by homodyne detection.

B. Nonlinear Multi-Resonant Cavity Quantum
Photonics Gyro

We now consider the gyroscopic operation of a doubly
resonant ring resonator with quadratic χ(2) nonlinearities
(Fig. 2). Quadratic nonlinearities are well-known gener-
ators of quantum-coherent correlations such as squeez-
ing and entanglement [50, 51]. Our Nonlinear Multi-
resonant Cavity Quantum Photonics Gyro, or Quantum-
Optic Nonlinear Gyro (QONG) in short, fuses nonlinear
dynamics, quantum correlations, and non-inertial Sagnac
effects in the same sensor-resonator, to maximally lever-
age any possible nonlinear quantum-optical effects for gy-
roscopic sensitivity. Specifically, we investigate the fol-
lowing Heisenberg-Langevin equations:
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dâ1,cw
dt

= −
(κ1
2

+
γ1
2

− iδ1

)
â1,cw + iβ1â1,ccw

+ χâ†1,cwâ2,cw +
√
κ1b̂

in
1,cw +

√
γ1ĉ

in
1,cw

(14)

dâ1,ccw
dt

= −
(κ1
2

+
γ1
2

+ iδ1

)
â1,ccw + iβ1â1,cw

+ χâ†1,ccwâ2,ccw +
√
κ1b̂

in
1,ccw +

√
γ1ĉ

in
1,ccw

(15)

dâ2,cw
dt

= −
(κ2
2

+
γ2
2

− iδ2

)
â2,cw + iβ2â2,ccw

− 1

2
χâ21,cw +

√
κ2b̂

in
2,cw +

√
γ2ĉ

in
2,cw

(16)

dâ2,ccw
dt

= −
(κ2
2

+
γ2
2

+ iδ2

)
â2,ccw + iβ2â2,cw

− 1

2
χâ21,ccw +

√
κ2b̂

in
2,ccw +

√
γ2ĉ

in
2,ccw

(17)

In these equations, the index j = 1, 2 in the field op-

erators (âj , b̂j , ĉj) stands for the fundamental ω1 and
second harmonic ω2 = 2ω1 resonances. κj and γj are the
decay rates of the coupling and the intrinsic loss chan-
nels. Rayleigh scattering rate between CW and CCW
modes at each resonance j is again characterized by βj ,
which is inversely proportional to the intrisic quality fac-
tor at each resonance j (Qij). The nonlinear coupling

terms χâ†1â2 indicate a multi-photon process in which
one incident photon with ω2 breaks down into two pho-
tons of half the frequency ω1 = ω2/2 (parametric down
conversion [52]), or its reverse, 1

2χâ
2
1, indicating that two

photons with ω1 combine into one photon with the double
frequency ω2 = 2ω1 (second harmonic generation [53]).
These are quantum-coherent, energy-conserving, three-
wave mixing processes, which preserve the fundamental
commutation relations [54]. The rotation-induced fre-
quency shifts (δ1, δ2) are different for each resonance,
have opposite polarity between CW and CCW modes,
and can be approximated by δ2 = 2δ1 (since δ = 2πrΩ

λn0

[7]). Note that here the material dispersion of the lithium
niobate is neglected because the index difference (n=2.21
at 1590 nm and n=2.25 at 795 nm) can be compensated
by engineering the geometry dispersion [55]. In order to
improve the accuracy of the model, however, the disper-
sion effect should be taken into account in future explo-
ration. The key parameter in this model is the nonlinear
modal coupling strength [48, 56]:

χ =
ϵ0
ℏ

∫∫∫
3χ(2)(r)

4
√
2

u∗1(z, r, θ)
2u2(z, r, θ)rdrdθdz (18)

where u∗1(z, r, θ) and u2(z, r, θ) are the electric field
profiles (in polar coordinates) of the fundamental and the
second harmonic eigenmodes of the gyroscopic resonator.
Given that our sensor is a ring resonator of radius R, it
is instructive to decompose χ into cross-sectional modal
overlap ζ and the remaining contributions. Following
[57], we approximate:

χ ≈

√
ℏω2

1ω2

ϵ02πR

ζ

ϵ1
√
ϵ2

3χ(2)

4
√
2

(19)

ζ =

∫∫
u∗1(z, r)

2u2(z, r)drdz∫∫
|u∗1(z, r)|2drdz

√∫∫
|u2(z, r)|2drdz

(20)

It is important to realize that the nonlinear Langevin
equations [48, 58] encode the time evolution of four cou-
pled infinite-dimensional quantum operators; as such, it
is very challenging to obtain an exact solution either an-
alytically or numerically (we note that straightforward
numerical methods using a truncated Fock basis [59] are
not feasible because our system typically involves milli-
watts of optical power amounting to ∼ 1016 photons).
However, at milli-watt injection powers, quantum fluc-
tuations can be considered “small signals” compared to
much stronger average field intensities at steady state,
so that each operator can be decomposed into a classi-
cal scalar-valued amplitude and a quantum fluctuation

operator, e.g. â = α + δ̂a. The details of calculat-
ing steady state solutions are included in Appendix A.
The classical amplitude represents a steady-state solu-
tion to the mean-field averaged Langevin equations at the
classical (large photon number) limit while the “small-
signal” fluctuation operator approximately obeys the lin-
earized Langevin equations in the vicinity of the steady-
state mean-field solution. Linearizing a nonlinear steady
state to study the fluctuations in its vicinity is com-
monly known as small-signal modeling in electronics en-
gineering [60]. In a similar spirit, the small-signal treat-
ment of quantum fluctuation operators in the Heisenberg-
Langevin picture is a simple but effective approach widely
accepted for steady-state noise analysis in laser and non-
linear quantum optics literature with experimental sup-
port [7, 61–64]. Theoretically, it is important to note that
such an approach is justified as long as the steady state
we consider is a hyperbolic fixed point whose neighbor-
hood is a topologically stable manifold that ensures small
fluctuations (Hartman-Grobman theorem [65]). On the
other hand, a more sophisticated phase-space formalism,
which employs quasi-probability distributions, Fokker-
Planck equations and stochastic calculus, can be used to
study more complicated dynamics such as large fluctu-
ations at non-hyperbolic critical points and self-pulsing
(limit-cycle) solutions [66]. Using the small-signal ap-
proximation, we can compute the differential photocur-
rent signals at both the fundamental and the second har-
monic resonances (see also Fig. 2):

î1 = iA1

(
b̂out†1,cwb̂

out
1,ccwe

−iϕ1 − b̂out†1,ccwb̂
out
1,cwe

iϕ1

)
(21)

î2 = iA2

(
b̂out†2,cwb̂

out
2,ccwe

−iϕ2 − b̂out†2,ccwb̂
out
2,cwe

iϕ2

)
(22)

Here A1 and A2 are constant factors determined by
the frequencies of the light and the responsivity of the
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photodetectors. eiϕ1 and eiϕ2 are the propagation phase
shifts that each output light experiences, which are deter-
mined by the propagation distances after the output CW
and CCW waves are mixed. Therefore, by controlling the

lengths of the output waveguides, eiϕ1 and eiϕ2 are set

to one here. Here we measure both î1 and î2 to extract
maximal information out of the nonlinear wave-mixing
gyro.

The output of our quantum-optic nonlinear gyro
(QONG) is now characterized by a mean vector ⟨i⟩ and
a covariance matrix ⟨∆i2⟩:

⟨i⟩ =
(
⟨̂i1⟩
⟨̂i2⟩

)
(23)

⟨∆i2⟩ =

(
⟨̂i21⟩ − ⟨̂i1⟩

2 ⟨̂i1 î2⟩+⟨̂i2 î1⟩
2 − ⟨̂i1⟩⟨̂i2⟩

⟨̂i1 î2⟩+⟨̂i2 î1⟩
2 − ⟨̂i2⟩⟨̂i1⟩ ⟨̂i22⟩ − ⟨̂i2⟩

2

)
(24)

Assuming that the joint probability distribution of the
measured photocurrents follow a bi-variate Gaussian, we
can express the Fisher information [42] of our QONG:

I(δ) = (
d⟨i⟩
dδ

)T ⟨∆i2⟩−1
(
d⟨i⟩
dδ

) (25)

The details of the statistial analysis of the differential
currents are included in Appendix B. Then the sensitivity
is determined by Cramer-Rao bound [67]:

δmin =
1√
I(δ)

(26)

Similar to the linear gyroscope, here MDR is given by:

Ωmin =
λn0

2πR
δmin (27)

Before we provide further estimation for particular
QONG implementation, we want to offer a few remarks
of our modeling approach:

• In this paper, we have stuck to a Langevin descrip-
tion of our quantum gyro, which takes into account
quantum noise through the Langevin fluctuation

operator b̂ or ĉ in each coupling or dissipation chan-
nel (with the rates determined by the fluctuation-
dissipation theorem), preserving the fundamental
commutation relations [48].

We note that while the Langevin form is widely
utilized in many experimental situations [57], more
sophisticated theoretical analysis, delineating the
open-system quantum dynamics [68], can be per-
formed using the density operator formalism and
the Master equation, which will be the subject
of future investigations. In particular, our sim-
ple perturbative approach restricts our solution to

examine the quantum fluctuations around a sta-
ble hyperbolic fixed point. On the other hand,
non-hyperbolic fixed points and non-steady state
attractors (such as limit cycles) require more so-
phisticated non-perturbative treatment (while their
implications for quantum correlations and sensing
remain unexplored). One such treatment involves
expanding the density operator in a non-diagonal
coherent state basis (so-called positive P represen-
tation), deriving a Fokker-Planck equivalent of the
Lindblad Master equation and simulating the asso-
ciated stochastic dynamics [48]. However, to the
best of our knowledge, Fokker-Planck equations
corresponding to more than two bosonic operators
[66, 69] have not been well studied; our nonlinear
multi-resonant cavity quantum photonic gyro is de-
scribed by 4 coupled Langevin equations and will
lead to an 8+1 dimensional Fokker Planck equa-
tion, which requires substantial computational re-
sources and will be the subject of future investiga-
tions.

• In our approach, we have assumed idealized sources
and detectors in order to simplify our gyroscopic
model to physically most crucial components, and
thereby to unveil the fundamental information-
theoretic limits (in the same spirit as the analy-
sis presented in Ref. [44] or Section 4 of Ref. [7]).
Future works will develop more detailed models
that can compute commonly accepted experimen-
tal metrics such as the integration-time depen-
dent Allan deviation curve [70], for example, by
incorporating the quantum theory of photodetec-
tion [71, 72], which can explicitly take into account
photo-electron generation rates and detector inte-
gration times.

• Last but not least, we note that our present model
focuses on χ(2) processes to delineate their effects
on the gyroscopic sensitivity. A more thorough
gyro model may also consider χ(3) (Kerr-type self
modulation) nonlinearities, which may come into
effect at ultra-high quality factors and are found to
limit the sensitivity of the (otherwise) linear gyro-
scope [7, 16]. While we shall take into account χ(3)

processes in detailed comprehensive models in the
future (see Section IV), we note that Eqs. 14-17 are
fully applicable to material platforms, such as thin
film lithium niobate [56, 73], which possess promi-
nent χ(2). Furthermore, unlike their linear coun-
terparts, resonators with χ(2) can be engineered to
exhibit negative Kerr shifts via cascaded second-
order effects [74], which can mitigate the intrinsic
positive Kerr shift; we shall investigate such cancel-
lation schemes in our future works. On the other
hand, we would like to emphasize that χ(3) pro-
cesses, including even the Kerr shift, need not be
treated as a nuisance, but as extra complexities and
additional degrees of freedom that can be optimized



6

to our advantage (see Section IV). For example, it
has been recently reported that the bistability ef-
fects associated with the Kerr-shift self-modulation
can even enhance sensitivities under appropriate
sensing schemes [75, 76].

>

>>

>

b1+ b1-
i1

b2+ b2-
i2

FIG. 2. The schematic of the nonlinear micro-ring gyroscope.
The input light is injected at four waveguide ports bin1 (CW)
/ bin1 (CCW) and bin2 (CW) / bin2 (CCW). The input/output
and loss channels for the second harmonic light are expressed
by blue arrows. The output light is measured by a joint mea-
surement using the differential currents at both output ports
(bout1 and bout2 ). The accuracy of the measurement is deter-
mined by evaluating the quantum Fisher information of the
output light.

C. Thin film lithium niobate as an implementation
platform

Our nonlinear multi-resonant cavity quantum photonic
gyro (or quantum-optic nonlinear gyro QONG in short)
can be implemented in any thin film material platform,
including LiNbO3 [73], AlN [77], SiC [78], GaAs [79], etc,
which has prominent χ(2). In this work we consider thin
film lithium niobate (TFLN) as a particularly promising
platform, as it has gained widespread popularity for re-
alizing quantum-grade ultra-low loss photonic integrated
circuits [80, 81]. Indeed, lithium niobate has been tra-
ditionally employed in quantum optics applications as
a nonlinear medium for generating squeezed light and
entangled photon states [82, 83]. However, traditional
LN crystals are bulky and suffer from relatively lim-
ited strength of light-matter interactions (leading to very

weak nonlinear coupling χ ∼ 103 Hz in Eqs. 19). Only
recently, high quality wafer-scale TFLN becomes widely
available for realizing integrated photonic circuits with
nonlinear and electro-optic functionalities [73]. Associ-
ated with large χ(2), low optical loss and strong nanopho-
tonic confinement [84], TFLN devices offer orders of mag-
nitude enhancements in nonlinear coupling χ ∼ 106Hz
[56].
Fig. 3 shows the design of a TFLN ring resonator which

can used as an QONG. Note that feeder waveguides
of different dimensions, frequency cutoffs, and disper-
sion characteristics, can be designed to selectively cou-
ple to the fundamental (1590nm) and the second har-
monic (795nm) modes [85], and their coupling rates can
be further tuned by TFLN electro-optics [86]. To realize
strong nonlinear coupling χ between the two resonances,
two zeroth-order transverse electric eigenmodes (TE00)
can be (quasi-)phase-matched [56] via periodic poling [87]
that achieves crystal domain inversion, leading to peri-
odically varying nonlinear susceptibility χ(2) which com-
pensates wave vector mismatch between the fundamental
and the second harmonic modes kχ = k(ω2)−2k(ω1) [56].
Apart from the phase-matched resonator itself, a fully in-
tegrated QONG can be implemented in TFLN, incorpo-
rating flip-chip bonded semiconductor lasers [88] and het-
erogeneously integrated uni-travelling carrier photode-
tectors [89]. Furthermore, we note that TFLN comes
with unique electro-optic control capabilities [73] which
can be used for tuning resonator parameters such as the
coupling rates to the waveguides [90], managing long
term temperature stability, cancelling thermal drifts and
electronic noise [15, 91], and performing signal processing
[92].

FIG. 3. The 3D schematic (not drawn to scale) of quasi-phase-
matching (QPM) achieved by periodic poling. Poled rings are
used to form quasi-phase matched structures. Semiconductor
lasers [88] and photodetectors [89] are also integrated on the
chip. The numerically simulated field profiles of both the
fundamental frequency (1590 nm) and the second harmonic
(795 nm) cavity modes are shown in the inset.

In our gyroscopic model, intrinsic losses γ and back-
scattering rates β should be treated as “fixed” parame-
ters which depend on the experimentally feasible char-
acteristics of a particular implementation platform, such
as residual material losses and surface roughness due to
fabrication imperfections. In thin film lithium niobate,
intrinsic quality factors reaching ∼ 108 have been demon-
strated [93], and we expect proportionate back-scattering
rates with the same order of magnitude. It is impor-
tant to realize that, apart from γ and β, almost all other



7

parameters can be designed, engineered and optimized,
including injection powers, coupling rates, resonator ra-
dius, resonator waveguide cross section and dispersion as
well as quasi-phase matching processes. We will utilize
these parameters as degrees of freedom (DoF) in optimiz-
ing the Fisher Information and hence the minimum de-
tectable rotation (MDR) of our QONG (as compared to
the linear gyro). While any optimization algorithm can
be employed, gradient-free global optimization methods
are most suitable for a relatively low-dimensional prob-
lem like our two-resonance gyro (where about 5–10 DoFs
can be optimized). We will use Bayesian optimization,
a simple but powerful machine-learning-based optimiza-
tion algorithm which requires relatively few function eval-
uations (as compared to other heuristic methods such as
simulated annealing and evolutionary algorithms [94, 95])
and has been observed to be particularly effective for op-
timizing ∼ 20 DoFs [43].

III. RESULTS

As noted above, the Fisher Information and the Min-
imum Detectable Rotation (MDR) of the gyroscope is
determined by various parameters and can be optimized
by judiciously adjusting their values. In our design, the
operational wavelengths (of the input/output light) are
fixed at λ1 = 1590 nm and at λ2 =795 nm. The mate-
rial property of TFLN is taken from the literature [84]:
the refractive index is n = 2.2 while the second order
nonlinear susceptibility is χ(2) = 30 pm/V. The intrin-
sic quality factors are fixed at Qi1 = 107 for the 1590
nm and Qi2 = 106 for the 795 nm. The Rayleigh scat-
tering rates for both cavity modes β1 = 5.4 × 104 Hz
and β2 = 5.4 × 105 Hz are inferred by adjusting the
literature-reported values [16] to the quality factors Qi

of our TFLN platform. We have also fixed the radius of
the resonator at R = 20 mm as well as the cross-sectional
dimensions of the resonator waveguide (1.2 µm width
×0.6 µm thickness) and the fabrication side wall angle
of 75◦, leading to a cross-sectional area of 0.8 µm2. The
two TE00 modes have phase mismatch of 1.354 µm−1,
which can be compensated by poling with a period of
4.64 µm. Based on Eqs. 19, the quasi-phase matched
χ(2) [56], and the numerically simulated modal overlap-
ping factor ζ = 1.18 /µm, the nonlinear coupling strength
is χ = 1.26×106 Hz, which is independent of the injection
schemes. The rest of the parameters remain to be deter-
mined, including the injection power at the fundamental
and the second harmonics P1 and P2, the quality factors
due to coupling to the waveguides for each cavity mode:
Qc1 and Qc2. These four parameters will be determined
by Bayesian optimization. We will investigate gyroscopic
performance under different injection schemes including
(1) coherent state input at the second harmonic (λ2), (2)
coherent state input at the sub-harmonic (λ1), and (3)
coherent state inputs at both second and sub-harmonics
(λ1 and λ2).

A. Optical parametric oscillator gyro (coherent
injection at second harmonic)

First, we study the performance of an optical para-
metric oscillator gyroscope under the coherent injection
at the second harmonic frequency. As shown in Fig.
4(a), classical laser light with a wavelength λ2 = 795
nm is injected from opposite directions from the waveg-
uide ports bin2,cw and bin2,ccw, while no light is injected from

the waveguide port bin1,cw or bin1,cw, i.e., P1 = 0. The care-
fully phase-matched fundamental and second harmonic
modes facilitate parametric down conversion, in which
one photon with higher frequency (shorter wavelength
λ2 breaks down into two photons with half the frequency
(longer wavelength λ1), generating phase-squeezed sig-
nals [48]. First we investigate the mininum detectable
rotation (MDR) as a function of the input power P2 and
the coupling factor Qc2. Using Bayesian optimization, we
identify a high sensitivity regime, that is, low MDR, as
shown in the 2D density plot of MDR in terms of P2 and
Qc2 (Fig. 4b). Here P1, P2, Qc1 and Qc2 are subject to
Bayesian optimization. Initial scanning range is required
for each parameter to start the optimization. For exam-
ple, the optimization of P1 and P2 starts from 0.1 µW
to 100 mW since integrated photonic devices don’t sup-
port high power input, while Qc1 and Qc2 range from
105 to 108, covering most of the thin film lithium nio-
bate micro-ring resonators. We mapped over the param-
eter space where Qc2 ranges from 5× 105 to 6× 105 and
P2 ranges from 20 mW to 30 mW. At the second har-
monic injection, the selection of P2 is determined by the
critical power Pc, below which the steady-state solutions
of the system become unstable. This phenomenon has
been discussed in details by Drummond [58]. Here Pc =
14.05 mW such that P2 should be larger than this value.
Within this region, small MDR (0 - 1.7 ◦/h) is observed
(indicated by rainbow colors), showing that high sensitiv-
ity is achieved for a sizable parameter range such that the
enhanced sensitivity is not an isolated singularity. The
lowest MDR (Ωmin < 0.25 ◦/h) appears in the narrow
purple band. Outside this region, MDR gradually in-
creases as the color becomes more greenish and reddish,
indicating reduced sensitivity. In principle, as the rota-
tion rate increases, the difference between the CW and
CCW mode becomes more significant. To benchmark
the gyroscope performance, we compared the sensitivity
of our optical parametric oscillator (OPO) gyro under the
second harmonic injection (solid blue line) with the sen-
sitivity of a standard linear gyroscope (solid red line) in
Fig. 4(c). The optimal coupling factors for the OPO gyro
are Qc1 = 1.018×105 and Qc2 = 5.462×105, both discov-
ered by Bayesian optimization. Meanwhile, the highest
sensitivity of the linear gyroscope (Ωmin = 4.465 × 10−3

◦/h) is found at Qc1 = 9.58 × 106 ≈ 107. Note that,
in the limit of vanishing β1, the lowest linear gyro MDR
is achieved when κ1 = γ1 (see Eq. 13). Since Qi1 is
fixed at 107, the optimal Qc1 for the linear gyro is ex-
pected to be close but not exactly equal to this value,
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considering the influence of the small but non-zero back-
scattering. As the input power is increased from 20 mW
to 30 mW, the MDR of the OPO gyro drops from ∼
0.42 ◦/h down to near zero and rises back to ∼ 1.21 ◦/h
with a local minimum at 23.507 mW, corresponding to
the optimal sensitivity point. We also found that the
optimal-sensitivity point is associated with 9.9 dB phase
squeezing at an experimentally feasible value on a TFLN
platform [80]. Meanwhile, the MDR of the linear gyro-
scope remains > 0.49 ◦/h, which demonstrates that the
OPO gyro is ∼ 124.4 × more sensitive than the linear
gyro under the same injection power, resonator size and
intrinsic quality factors. In order to visualize this effect,
we investigated the mean current values as a function of
the rotation rate Ω at different frequencies in Fig. 4(d).
The mean values of the output differential currents at
the subharomonic (< i1 >) and the second harmonic
(< i2 >) are expressed by the solid blue and red line re-
spectively, while that of the linear gyroscope at the same
power consumption is expressed by the solid green line
for reference. It is shown that as Ω increases from 0 - 100
◦/h, < i1 > increases from 0 - 0.43 nA, < i2 > increases
from 0 - 0.4 nA while the output current of the linear
gyroscope increases from 0 - 0.17 nA. This result shows
that the nonlinear eigenmode dispersion, as discussed in
Section II B, produces stronger output signals (differen-
tial currents) at both wavelengths compared to the linear
gyroscope.
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FIG. 4. (a) The schematic of the second harmonic injection
scheme. The input light is only injected at the second har-
monic (blue arrow). (b) 2D density plot of the sensitivity
at second harmonic injection. The sensitivity (MDR) is ex-
pressed as a function of the input power P2 and the quality
factor due to coupling loss of the second harmonic cavity mode
Qc2. (c) 1D plot of the sensitivity of the second harmonic in-
jection scheme (blue) and the standard linear gyroscope (red)
at optimal Qc in terms of the input power. (d) 1D linear plot
of the mean differential current of the output light at fun-
damental frequency (blue), second harmonic (green) and the
standard linear gyroscope (red).

B. Coherent injection at the fundamental
frequency

Aside from injecting light at the second harmonic,
we also investigated the scheme of the fundamental fre-
quency (subharmonic) injection. As shown in Fig. 5(a),
the input light at the wavelength λ1 = 1590 nm is in-
jected from the waveguide ports bin1,cw and bin1,cw while
P2 = 0, stimulating intra-cavity up-conversion (two pho-
tons of lower energy are combined to one photon of higher
energy). We study the sensitivity (MDR) in terms of P1

and Qc1, as indicated by the 2D density plot Fig. 5(b),
in which variations in MDR again show up in rainbow
colors. In Fig. 5(b) we mapped over the parameter
space where Qc1 ranges from 6 × 106 to 7 × 106 and P1

ranges from 0.9 µW to 1 µW . Note that much lower
power injection is required at this injection scheme com-
pared to coherent injection at the second harmonic, re-
lated to the fact that the steady-state solutions of the
cavity modes are stable only when P1 is below the criti-
cal power when the second harmonic injection is absent
[58]. Here the critical power is Pc = 3.24 mW. Only
solutions of P1 smaller than this value are stable, result-
ing in orders of magnitude lower power consumption. In
Fig. 5(b), MDR varies from 0 - 5 ◦/h across the entire
parameter space. The lowest MDR is found in a nar-
row band-like region. The mean values of the output
currents are also studied here. To better evaluate the
gyroscope performance, we compared it with the linear
gyroscope at the same power consumption. Figure 5(c)
shows the sensitivity of the fundamental frequency injec-
tion (solid blue line) and the linear gyroscope (solid red
line) in terms of the injection power at fixed optimal Q
factors (Qc1 = 6.747 × 106, Qc2 = 6.675 × 107), which
are determined by Bayesian optimization, and optimal
Qc = 9.58× 106 in the linear gyro. As P1 increases from
0.9 µW to 1 µW , MDR drops from ∼ 0.46 ◦/h down to
near zero at 0.945 µW , then rises back to ∼ 0.49 ◦/h.
Meanwhile, the sensitivity of the linear gyroscope mono-
tonically but slowly decreases from ∼ 89.78 ◦/h to ∼
85.17 ◦/h. The optimal sensitivity Ωmin = 0.093 ◦/h is
found at P1 = 0.945 µW . At the optimal point, a sur-
prisingly high sensitivity improvement of ∼ 942.5 × is
observed (0.093 ◦/h vs 87.62 ◦/h). Most importantly,
the fundamental frequency injection scheme merges high
sensitivity and low power consumption together in a com-
pact form, which shows great potential in practical ap-
plications. Similar to the analysis in Section IIIA, the
mean differential currents (< i1 >, < i2 > and linear)
as a function of the rotation rate Ω are shown in Fig.
5(d) in solid blue, red and green lines. As Ω increases
from 0 - 100 ◦/h, < i1 > increases from 0 - 0.05 pA,
< i2 > increases from 0 - 0.0062 pA and the output dif-
ferential current of the linear gyroscope increases from
0 - 0.0069 pA. The differential currents are in the pA
range, not the nA range, again because of much weaker
input power. It is shown that the sensitivity of < i1 >
is almost 10× larger than that of < i2 > and that of
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the output current in the linear gyroscope, suggesting
that, even though very little second harmonic power is
ultimately extracted, the presence of a non-linearly in-
teracting second harmonic mode critically enhances the
sensitivity of the fundamental mode.
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FIG. 5. (a) The schematic of the fundamental frequency (sub-
harmonic) injection scheme. The input light is only injected
at the fundamental frequency (red arrow). (b) 2D density
plot of the sensitivity at the fundamental frequency injection
scheme. The sensitivity (MDR) is expressed as a function of
the input power P1 and the quality factor due to coupling
loss of the cavity mode Qc1. (c) 1D plot of the sensitivity
of the fundamental frequency injection scheme (blue) and the
standard linear gyroscope (red) at optimal Qc in terms of the
input power. The inset shows the magnified plot of the criti-
cal region. (d) 1D linear plot of the mean differential current
of the output light at fundamental frequency (blue), second
harmonic (green) and the standard linear gyroscope (red).

C. Dual frequency injection

For the sake of completeness, we also studied the dual
injection scheme (Fig. 6a) where coherent light is injected
at both fundamental and second harmonics (λ1 = 1590
nm and λ2 = 795 nm). Here, we optimize four indepen-
dent parameters: P1, P2, Qc1, and Qc2. The 2D density
plot of the sensitivity (MDR) in terms of P1 and P2 is
shown in Fig. 6(b). Here Qc1 and Qc2 are fixed at the
optimal values of 4.353×105 and 8.769×106, again discov-
ered by Bayesian optimization. In Fig. 6(b), P1 ranges
from 1 mW to 2 mW and P2 ranges from 1 mW to 2
mW. Similar to the scheme of fundamental frequency in-
jection, we found that low input power is also necessary
for high sensitivity, which is beneficial for integrated op-
tical gyroscopes. As shown in the figure, MDR ranges
from 0 - 1.4 ◦/h across the entire parameter space. The
region of the lowest MDR is expressed by a narrow purple
band in the figure while outside this region MDR grad-
ually increases. We also compare the MDR of the dual
injection scheme (solid blue line) with the linear gyro-

scope (solid red line), as shown in Fig. 6(c). Note that
in the figure the x-axis denotes the total input power P ,
which equals to P1 + P2 for the dual frequency injection
and P1 for the linear gyroscope. Here P2 is fixed at 1.873
mW, which is the optimal value discovered by Bayesian
optimization. It is shown that the sensitivity of dual fre-
quency injection drops from ∼ 0.88◦/h down to near zero
as P increases from 3 mW to 3.373 mW, then rises back
to ∼ 0.762 ◦/h as P increases to 4 mW while sensitivity
of the linear gyroscope drops from 1.555 ◦/h to 1.347 ◦/h
within the same range of injection power. At the optimal
power (3.373 mW), a high sensitivity of 0.013 ◦/h is ob-
served, leading to a substantial sensitivity improvement
of ∼ 113.1 × over the linear gyroscope (0.013 ◦/h vs 1.47
◦/h). To better understand the influence of rotation, the
mean output currents are shown in Fig. 6(d). As the ro-
tation rate Ω increases from 0 - 100 ◦/h, < i1 >, < i2 >
and the mean differential current of the linear gyroscope
monotonically increases from 0 to 5.3 pA, 11.1 pA and
24.7 pA respectively. Note that here neither the sub nor
the second harmonic mode shows stronger output cur-
rent compared to the linear gyroscope. This is because
the injection power of the linear gyroscope equals to the
summation of both the sub and the second harmonic in-
jection. Nonetheless, significant sensitivity improvement
is still observed in this case due to the combination of
the nonlinear coupling and the generation of the phase-
squeezed photons.
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FIG. 6. (a) The schematic of the dual (sub-second harmonic)
injection scheme. The input light is only injected at both
the second (blue arrow) and the fundamental frequency (red
arrow). (b) 2D density plot of the sensitivity at the dual injec-
tion scheme. The sensitivity (MDR) is expressed as a function
of the input power P1 and P2. (c) 1D plot of the sensitivity
of the dual injection scheme (blue) and the standard linear
gyroscope (red) at optimal Qc in terms of the input power.
The inset shows the magnified plot of the critical region. (d)
1D linear plot of the mean differential current of the output
light at the fundamental frequency (blue), second harmonic
(green) and the standard linear gyroscope (red).
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D. Discussion

Table I summarizes the maximal sensitivity enhance-
ment factors (over the linear baseline) that can obtained
in multiple operational regimes over a wide range of
critical power requirements. Under the optimal second-
harmonic injection at ≈ 23.5 mW, a 9.9 dB quadra-
ture squeezing is predicted, where our nonlinear multi-
resonant cavity quantum photonics gyro (or quantum-
optic nonlinear gyro QONG in short) can be nearly
124.4× more sensitive than an optimized linear gyro with
the same radius, intrinsic quality factor and power bud-
get, allowing for a minimum detectable rotation (MDR)
as small as 0.0044 ◦/h. Alternatively, even larger en-
hancement factors can be obtained at lower powers un-
der the fundamental and the dual frequency injection
schemes. The dual frequency injection scheme achieves
near 7 × sensitivity improvement over the fundamen-
tal frequency injection scheme (0.013 ◦/h vs 0.093 ◦/h),
which could be the result of the extra squeezed photons
generated by the process of parametric down conversion.
In fact, these two latter scenarios do not only promote
squeezing (4.8 dB in fundamental frequency injection and
5.09 dB in dual injection) but also rely on nonlinear cou-
pling, which will be detailly discussed in Appendix C. In
either of our fundamental or second-harmonic injection
scheme, we measured the output signals at both the fun-
damental and the second harmonic frequencies in order to
fully utilize the input pump power (which gets converted
into both harmonics), setting up a fair comparison to a
linear gyro under the same pump power. For a more
conservative comparison, one may argue for using dual
inputs and outputs in the linear case. Aside from the
fact that having to use two different frequency lasers can
be disadvantageous, a simple calculation readily shows
that measuring two non-interacting resonances in a lin-
ear gyro can offer only up to

√
2× improvement (under

the same power budgets)—in fact, much less than
√
2 due

to the smallerQi2—highlighting that nonlinear effects are
indeed indispensable for significant sensitivity enhance-
ments. Most importantly, the crucial insight we have
drawn from our investigations is to realize that multiple
resonances in a nonlinear resonator can be engineered
to reinforce each other through nonlinear wave mixing,
and can be used as powerful degrees of freedom to op-
timize sensitivities. This critical realization suggests an
exciting future direction: to generalize our QONG from
just two resonances to many more nonlinearly interacting
resonances (see also Section IV), which may lead to even
better sensitivities and functionalities (approaching the
ultimate Heisenberg limit).

IV. SUMMARY AND OUTLOOK

We have introduced a new type of quantum light gy-
roscopes based on nonlinear multi-resonant cavity quan-
tum photonics (quantum-optic nonlinear gyro or QONG

P1 (mW) P2 (mW) Qc1 Qc2 Ωmin (°/h) <Y> (dB)

Linear 23.507 None 9.58*106 None 0.5555 None

Second harmonic None 23.507 1.018*105 5.462*105 0.004465 9.91

Sensitivity enhancement factor: 124.4×

Linear 0.000945 None 9.58*106 None 87.6183 None

Fundamental 0.000945 None 6.747*106 6.765*107 0.09296 4.8

Sensitivity enhancement factor: 942.5×

Linear 3.373 None 9.58*106 None 1.4666 None

Dual 1.5 1.873 4.353*105 8.769*106 0.01296 5.09

Sensitivity enhancement factor: 113.1×

TABLE I. Optimal sensitivities of various injection schemes

in short). Specifically, we analyzed and optimized the
quantum-enhanced gyroscopic sensitivity of a doubly res-
onant χ(2) cavity, revealing that, under quantum noise
conditions, ≳ 900× enhancement is possible over the clas-
sical shot noise limit. A maximum sensitivity of 0.0044
◦/h has been achieved at an input power of 23.507 mW
at the second harmonic injection, exhibiting comparable
sensitivity performance and much lower power consump-
tion than state-of-the-art FOGs (Boreas D90: 0.001 ◦/h,
12 W,) and RLGs (Honeywell GG1320AN: 0.0035 ◦/h,
1.6 W) [96, 97]. In addition, one of the main advantages
of the current work is that the quantum states of light
are generated on chip instead of being injected. We high-
light that our current design, which uses two resonances,
represents only an elementary step and a relatively sim-
ple example of an QONG. In future works, we will de-
velop a comprehensive QONG inertial sensing paradigm,
where a synergistic amalgamation of both quadratic χ(2)

and cubic χ(3) nonlinearities, along with multiple in-
termixing resonances, mutually reinforced Sagnac shifts,
co-arising quantum correlations, electro-optics dynami-
cal control and geometry-induced anomalous dispersion
effects, can unleash extraordinary complexities and free-
doms, which can be fully exploited by state-of-the-art
optimization techniques [98–101] in order to identify un-
precedented regimes for gyroscopic operation and sen-
sitivities. A full incarnation of an QONG can be de-
scribed by a Heisenberg-Langevin system of the form (or
an equivalent density-operator Master equation [66]):

dâµj
dt

=
(
iωj + iδµj (Ω)−

κj
2

− γj
2

)
âµj + iβj â

ν
j

+
∑
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(
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k )
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+
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)
+
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k
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κcjkâ

µ
jk,in +

∑
k

√
γrjkη̂

µ
jk (28)

for a selected set of carefully phase-matched and
dispersion-engineered resonances {ωj , j = 1, ..., N}.
Here, δµ(Ω), µ ∈ {cw,ccw}, is the rotation-dependent
Sagnac shift in the CW or CCW mode at each res-
onance. The functions f (2) and f (3) are polynomials
of the annihilation and creation operators, represent-
ing all possible quantum-coherent three-wave mixing and
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four-wave mixing interactions between the selected res-
onances; these processes include sum and difference fre-
quency generations of different orders and combinations
as well as Kerr-variety self-phase and cross-phase mod-
ulation, and even cascaded processes [102]. It is impor-
tant to note that the strengths of different f (2) and f (3)

terms are determined by nonlinear coupling factors [57]
which characterize the field concentration and nonlin-
ear overlaps of the modes of the photonic resonator and
can be computed from nanophotonic simulations. There-
fore, on-chip structural parameters, ranging from a few
simple shape parameters to entire permittivity distribu-
tions, can serve as design degrees of freedom [103], by
which we can engineer and optimize the different non-
linear processes (e.g. their relative contributions). The
outputs of this multi-resonance system are collected by
multiple waveguide ports and are set to passively inter-
fere with each other and/or go through active electro-
optics pulse processing (readily achievable on a TFLN
platform [73]) before arriving at multiple photodetectors

to yield multiple photocurrent signals i = {̂i1, ..., îM}.
From these multi-variable (vector-valued) measurements,
one can perform deep inferential analysis (such as ad-
vanced Bayesian computing [104]) to deduce the underly-
ing non-inertial motion; the sensitivity of the entire pro-
cess can be characterized by an end-to-end computation
of Fisher Information, which will serve as an optimization
figure of merit. We recognize tremendous opportunity in
analyzing and optimizing such a system with increasing
levels of mathematical and computational vigor, start-
ing from steady-state analysis, small-signal modeling,
classical stochastic simulations, to the non-perturbative
quantum phase-space apparatus involving positive P-
representations, Fokker-Planck equations and stochastic
calculus [48, 66], from few-parameter deterministic global
optimization [99, 105], multi-parameter Bayesian opti-
mization [43] and evolutionary algorithms [106], machine-
learning assisted hybrid optimization [107], and Monte
Carlo gradient computations [101] to billion-voxel topol-
ogy optimization [108] and full end-to-end inverse design
[109] of the entire workflow from the underlying resonator
geometry to multi-variable inferential processes. Exper-
imentally, thin film lithium niobate (TFLN) continues
to offer the most suitable platform which features state-
of-the-art on-chip frequency combs, pulse shaping, fre-
quency shifting and ultra-fast signal processing capabili-
ties [81, 110–112].
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Appendix A: Steady state solutions

As discussed in Section II B, the nonlinear coupled
equations are solved by linearization. The classical scalar
valued amplitudes α are obtained from the steady state
analysis of Eqs. 14-17. To evaluate the steady state solu-
tions, the noise terms containing the quantum operators
are omitted. The equations are thus simplified as follows:

f1 =
(κ1
2

+
γ1
2

− iδ1

)
a1,cw − iβ1a1,ccw

− χa∗1,cwa2,cw −
√
κ1b

in
1,cw

(A1)

f2 =
(κ1
2

+
γ1
2

+ iδ1

)
a1,ccw − iβ1a1,cw

− χa∗1,ccwa2,ccw −
√
κ1b

in
1,ccw

(A2)

f3 =
(κ2
2

+
γ2
2

− iδ2

)
a2,cw − iβ2a2,ccw

+
1

2
χa21,cw −

√
κ2b

in
2,cw

(A3)

f4 =
(κ2
2

+
γ2
2

+ iδ2

)
a2,ccw − iβ2a2,cw

+
1

2
χa21,ccw −

√
κ2b

in
2,ccw

(A4)

Next, the steady state solutions are hence obtained by
solving the equations F (f1, f2, f3, f4) = 0. Aside from
the cavity modes an,cw/ccw, the input fields are also ex-
pressed as the steady states bn,cw/ccw. These values are
determined by the input power Pn at both waveguide
ports as discussed in Equation 3. Here we fix bn as
real values, which reduces the phase noise as reported
by Dowling [12]. At different injection schemes, different
arrangements of bn are employed. For example, b2 = 0
at when the input light is injected at the fundamental
frequency and b1 = 0 at the second harmonic injec-
tion. Though the steady state solutions of a similar sys-
tem has been studied by Drummond [58], in which the
analytical solutions are given at each injection scheme.
In our system, however, the rotation-induced frequency
shift δn and the Rayleigh back-scattering βn which in-
troduces cross-coupling between the CW and the CCW
modes make it impossible to calculate the analytical solu-
tion, hence we calculated the numerical solutions instead.
Since these equations are nonlinear equations, multiple
solutions are expected at each set of parameters. In or-
der to discover the steady state solutions, linear stability
analysis is performed [113, 114]. By checking the eigen
values of the Jacobian matrix [115] associated with each
set of solution we can determine the stability of these so-
lutions. The Jacobian matrix J of Eqs A1-A4 is obtained
by taking the gradient over a vector of the unknown vari-
ables an,cw/ccw:

J = ∇F |an,cw/ccw
(A5)

Note that in Equation A5 the function system F and
the variables an,cw/ccw are both vectors, hence the gradi-
ent operator ∇ generates a matrix J instead of a vector.
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When the real part of the eigen values of the matrix is
negative, the solution is stable and can be used for fur-
ther calculation.

Appendix B: The algebra of the quantum operators

The system is assumed to be quantum-limited, mean-
ing that the shot noise is considered as the main source
of noise. To this end, it is necessary to investigate the
statistical properties of the output light. As discussed in
Section II B, the output light are expressed by the op-

erators b̂outn,cw/ccw. As shown in Fig. 2, the output light

is measured by homodyne detection that b̂outn,cw and b̂outn,ccw

are coupled with each other before being detected by two
independent photodetectors:

b̂1+ =
(
b̂out1,cwe

−iϕ1 + ib̂out1,ccwe
iϕ1

)
/
√
2 (B1)

b̂1− =
(
ib̂out1,cwe

−iϕ1 + b̂out1,ccwe
iϕ1

)
/
√
2 (B2)

b̂2+ =
(
b̂out2,cwe

−iϕ2 + ib̂out2,ccwe
iϕ2

)
/
√
2 (B3)

b̂2− =
(
ib̂out2,cwe

−iϕ2 + b̂out2,ccwe
iϕ2

)
/
√
2 (B4)

Here ϕ1 and ϕ2 are the propagation phase shifts of the
output light at the sub and the second harmonics, which
can be arbitrarily selected. Here we set them to zero.
The resultant differential current current is given by:

î1 = Rℏω1

(
b̂†1+b̂1+ − b̂†1−b̂1−

)
(B5)

î2 = Rℏω2

(
b̂†2+b̂2+ − b̂†2−b̂2−

)
(B6)

Here R is the responsivity of the photodetectors, set as
0.58 A/W in our analysis. Setting A1 = Rℏω1 and A2 =
Rℏω2, Eqs. B5-B6 can be further simplified as:

î1 = iA1

(
b̂out†1,cwb̂

out
1,ccw − b̂out†1,ccwb̂

out
1,cw

)
(B7)

î2 = iA2

(
b̂out†2,cwb̂

out
2,ccw − b̂out†2,ccwb̂

out
2,cw

)
(B8)

Following Maleki’s approach [7], the output operators are

linearized as b̂outn,cw/ccw = boutn,cw/ccw + δ̂b
out

n,cw/ccw. Here we

analyze the perturbation terms, such that Eqs. B7- B8
are simplified as:

δ̂i1 = iA1

(
bout1,ccwδ̂b

out†
1,cw + bout∗1,cwδ̂b

out

1,ccw

− bout
∗

1,ccwδ̂b
out

1,cw − bout1,cwδ̂b
out†
1,ccw

) (B9)

δ̂i2 = iA2

(
bout2,ccwδ̂b

out†
2,cw + bout∗2,cwδ̂b

out

2,ccw

− bout
∗

2,ccwδ̂b
out

2,cw − bout2,cwδ̂b
out†
2,ccw

) (B10)

Then quadrature basis expansion is performed to sepa-
rate the real and the imaginary parts (X and Y ) of the

operators:

boutn,cw/ccw = Xout
n,cw/ccw + iY out

n,cw/ccw (B11)

bout∗n,cw/ccw = Xout
n,cw/ccw − iY out

n,cw/ccw (B12)

δ̂b
out

n,cw/ccw = ˆδX
out

n,cw/ccw + i ˆδY
out

n,cw/ccw (B13)

δ̂b
out†
n,cw/ccw = ˆδX

out

n,cw/ccw − i ˆδY
out

n,cw/ccw (B14)

Hence, Eqs. B9-B10 are converted to:

δ̂i1 = 2A1

(
Xout

1,ccw
ˆδY

out

1,cw − Y out
1,ccw

ˆδX
out

1,cw

−Xout
1,cw

ˆδY
out

1,ccw + Y out
1,cw

ˆδX
out

1,ccw

) (B15)

δ̂i2 = 2A2

(
Xout

2,ccw
ˆδY

out

2,cw − Y out
2,ccw

ˆδX
out

2,cw

−Xout
2,cw

ˆδY
out

2,ccw + Y out
2,cw

ˆδX
out

2,ccw

) (B16)

Next we need to determine the statistical properties of

δ̂i1 and δ̂i2. Nevertheless, the output light is in com-
plex quantum states (squeezed vacuum/squeezed coher-
ent) which are difficult to calculate. On the other hand,
these quadrature operators are nothing but linear com-
binations of the input light which is in relatively simple
quantum states (vacuum/coherent). To this end, we cal-
culate the mean values and the variances from the input
states. Rewrite Eqs. B15 and B16 in the form below:

δ̂i1 =

2∑
n=1

(b
(1)
x,n,cw/ccwb̂

in
X,n,cw/ccw + b

(1)
y,n,cw/ccwb̂

in
Y,n,cw/ccw

+ c
(1)
x,n,cw/ccwĉ

in
X,n,cw/ccw + c

(1)
y,n,cw/ccwĉ

in
Y,n,cw/ccw)

(B17)

δ̂i2 =

2∑
n=1

(b
(2)
x,n,cw/ccwb̂

in
X,n,cw/ccw + b

(2)
y,n,cw/ccwb̂

in
Y,n,cw/ccw

+ c
(2)
x,n,cw/ccwĉ

in
X,n,cw/ccw + c

(2)
y,n,cw/ccwĉ

in
Y,n,cw/ccw)

(B18)

In Eqs. B17-B18, b̂inX,n,cw/ccw, b̂inY,n,cw/ccw, ĉinX,n,cw/ccw

and ĉinY,n,cw/ccw are the quadrature operators (real and

imaginary parts) of the injection light light b̂inn,cw/ccw

and the intrinsic loss channels ĉinn,cw/ccw for sub/second

(n=1,2) harmonic light, where b̂inX,n,cw/ccw, b̂
in
Y,n,cw/ccw are

in coherent states and ĉinX,n,cw/ccw and ĉinY,n,cw/ccw are in

vacuum states. b
(1,2)
x,n,cw/ccw, b

(1,2)
y,n,cw/ccw, c

(1,2)
x,n,cw/ccw and

c
(1,2)
y,n,cw/ccw are the corresponding coefficients of these op-

erators at either sub or second harmonic. Assume ψ1/ψ2

and N1/N2 are the initial phases and the numbers of the

injected photons of the input light b̂1,cw/ccw and b̂2,cw/ccw,

whereN1 = |bin1 |2 andN2 = |bin2 |2. With all these ingredi-
ents, now we can calculate mean values and the variances
of both differential currents. For a coherent state |α >,
the mean values of both quadrature operators and their
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squares are given by [116]:

< α|X̂|α >=
√
N cosψ (B19)

< α|Ŷ |α >=
√
N sinψ (B20)

< α|X̂2|α >= 4N(cosψ)2 + 1

4
(B21)

< α|Ŷ 2|α >= 4N(sinψ)2 + 1

4
(B22)

and the variances are defined as the mean values of the
square minus the square of the mean values of the quadra-
ture operators:

< α|∆X̂2|α >=< α|X̂2|α > −(< α|X̂|α >)2 =
1

4
(B23)

< α|∆Ŷ 2|α >=< α|Ŷ 2|α > −(< α|Ŷ |α >)2 =
1

4
(B24)

Note that when two quadrature operators do not share
the same eigen vectors, the definitions are different. For
example, the inner product of a real quadrature opera-
tor at the second harmonic and an imaginary quadrature
operator at the fundamental frequency injection is given
by:

< α|X̂2Ŷ1|α >=
√
N1

√
N2 cosψ2 sinψ1 (B25)

< α|X̂2Ŷ1|α > − < α|X̂2|α >< α|Ŷ1|α >= 0 (B26)

Now we can obtain the mean values and the variances of
δ̂i1 and δ̂i2:

< δ̂i1 >=

2∑
n=1

(
b
(1)
x,n,cw/ccw

√
Nn cosψn

+ b
(1)
y,n,cw/ccw

√
Nn sinψn

) (B27)

< δ̂i2 >=

2∑
n=1

(
b
(2)
x,n,cw/ccw

√
Nn cosψn

+ b
(2)
y,n,cw/ccw

√
Nn sinψn

) (B28)

< ∆δ̂i
2

1 > =
1

4

2∑
n=1

(
[(b

(1)
x,n,cw/ccw)

2 + (b
(1)
y,n,cw/ccw)

2

+ (c
(1)
x,n,cw/ccw)

2 + (c
(1)
y,n,cw/ccw)

2]
)

(B29)

< ∆δ̂i
2

2 > =
1

4

2∑
n=1

(
[(b

(2)
x,n,cw/ccw)

2 + (b
(2)
y,n,cw/ccw)

2

+ (c
(2)
x,n,cw/ccw)

2 + (c
(2)
y,n,cw/ccw)

2]
)

(B30)

As discussed in Section II B, in order to determine the
covariance matrix, it is also necessary to calculate the

correlation between δ̂i1 and δ̂i2 following the rule of op-
erator calculation defined above:

< δ̂i1δ̂i2 > − < δ̂i1 >< δ̂i2 > =

2∑
n=1

[
b
(1)
x,n,cw/ccwb

(2)
x,n,cw/ccw

+ b
(1)
y,n,cw/ccwb

(2)
y,n,cw/ccw

+ c
(1)
x,n,cw/ccwc

(2)
x,n,cw/ccw

+ c
(1)
y,n,cw/ccwc

(2)
y,n,cw/ccw

]
(B31)

< δ̂i2δ̂i1 > − < δ̂i2 >< δ̂i1 > = < δ̂i1δ̂i2 > − < δ̂i1 >< δ̂i2 >
(B32)

With everything discussed in this section, particularly
Eqs. B27-B32, now we can calculate Eqs. 23-25 to de-
termine the Fisher information and the corresponding
sensitivity of the system.

Appendix C: Further analysis on sensitivity
enhancement

To further investigate the mechanism for the sensitiv-
ity enhancements, we plotted the quadrature squeezing
levels in all three injection schemes in the appendix (Fig.
A1). In Fig. A1 (a) and (b), strong phase squeezing of >
9 dB is observed for the output light at the fundamental
frequency and increases at higher power, while negative
amplitude squeezing is observed at the output signal at
the second harmonic (0 to -3 dB), showing that phase
squeezed light is generated by subharmonic generation.
In Fig. A1 (c) and (d), relatively weaker phase squeez-
ing is observed at the fundamental frequency injection
(4.8 dB), while at the same time amplitude squeezing
is also observed at the output at the second harmon-
ics (6.03 dB). This observation is counter-intuitive be-
cause we expect up-conversion to be dominant at the
fundamental frequency injection, which only generates
amplitude-squeezed light at the second harmonic output.
Nevertheless, since the phase-matching condition is sat-
isfied, these high energy photons could be converted back
to the fundamental frequency by down-conversion, lead-
ing to the phase squeezing. For the same reason, posi-
tive phase/amplitude squeezing is observed respectively
at the output at the fundamental frequency/second har-
monic at dual injection, as shown in Fig. A1 (e) and
(f). Note that the sensitivity (MDR) monotonically in-
creases with the level of phase squeezing, as shown in
Table I, showing that the squeezing of the phase noise
indeed plays an important role in improving the sensi-
tivity of the gyroscope. Furthermore, we examined the
dependence of sensitivity (MDR) on the nonlinear cou-
pling strength χ at all three injection schemes, as shown
in Fig. A2. The value of χ is 1.26 MHz, so here we
scan over 1.2 – 1.3 MHz. Optimal sensitivities (minimum
MDRs) are observed at 1.26 MHz in all three cases, sug-
gesting that the gyroscope sensitivity is enhanced by the



14

χ(2) nonlinear coupling process, which is largely due to
nonlinear eigenmode dispersion in the presence of criti-

cally sensitive χ(2)-mediated wave mixing processes, not
dissimilar to enlarged Sagnac shifts reported in dispersive
materials [117].
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FIG. A1. The squeezing levels of the phase and the ampli-
tude quadrature at various injection schemes. (a)-(b): Second
harmonic injection, (c)-(d): Fundamental frequency injection
and (e)-(f): Dual injection.
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FIG. A2. The sensitivities as functions of nonlinear coupling
strength χ at various injection schemes.
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