Nanocavity lasers
detect chemicals

he construction of com-

pact spectroscopic tools

for the optical analysis of

ultrasmall sample volumes

remains an important goal
in the development of integrated
microfluidics systems. Miniaturization
of appropriate light sources and detec-
tors can enable very compact and versa-
tile “laboratory on a chip” devices, in
which many analytical functions can be
monolithically combined. A device-
integration platform that is ideally suit-
ed to enable such integration of small
and efficient optical components is the
membrane-based planar photonic crys-
tal (PC), defined within slabs with high
refractive-index contrast by standard
lithography and semiconductor fabrica-
tion processes. 2 High-quality optical
cavities with mode volumes far below a
cubic wavelength have already been
demonstrated, and can be used to
obtain large optical fields.>3

Single-defect sensor elements

The small mode volumes of PC lasers can be used to devel-
op chemical sensors with high spectral sensitivity to changes
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FIGURE 1. A photonic-crystal nanocavity laser sensor (scanning-electron micrograph,
left) has a tightly confined field, as seen in its calculated field distribution (right).

Photonic-crystal lasers
have been developed that
permit the introduction of
analyte within the peak of
the optical field of the
lasing mode. These
nanocavity lasers can be
operated in different

ambient organic solutions,

performing spectroscopic
tests on femtoliter
volumes of analyte.

in refractive index and absorp-
tion of their surroundings. By
combining an unconventional
cavity geometry with optical
gain at 1550 nm, we have
defined ultrasmall sensor ele-
ments that can emit a very nar-
row spectrum (see Fig. 1).
Because they are lithographically
defined, such sources can easily
be integrated into large arrays.
The cavity geometry we have
chosen for our chemical sensors
is based on a single-defect trian-
gular-lattice planar PC.%7 In
addition to the introduction of a
smaller hole to define the optical
cavity, we also introduce a frac-
tional edge dislocation by
extending the length of one of
the rows of holes to break the
symmetry of the optical cavity.?

When such a cavity is defined within an indium gallium
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arsenide phosphide (InGaAsP) membrane, low-threshold
room-temperature lasing can be achieved.” The cavity
design causes the energy of the mode to be mostly confined
to the central defect hole. To increase the interaction
between light and the material within that hole, a larger
defect-hole diameter is preferred. Increasing this hole

reduces the gain provided by the light-emitting quantum
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PHOTONIC-CRYSTAL LASERS, continued

sitivity of the lasing frequency to changes
in ambient refractive-index changes, and
predict a wavelength shift of the reso-
nance of approximately AL = 266 + An. To
demonstrate this experimentally, PC
nanolasers were fabricated from InGaAsP
quantum-well material. Optical gain was
provided by four 9-nm-thick, compres-
sively strained quantum wells placed in

wells within the laser cavity, however,
thereby increasing the threshold of our
laser, Therefore, a tradeoff between the
optical overlap with the analyte cavity
and the optical gain is needed.

From finite-difference time-domain
analysis of the dependence of the resonant
frequency on the refractive index of the

analyte (n;m]}.m), we can estimate the sen-
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FIGURE 2. Measured laser spectra of a
PC nanolaser sensor when filled with air,
methanol, or isopropyl alcohol (IPA) reveal
a position that depends on the fill material.
Immersion in IPA produces a wavelength
shift of 67 nm.

the center of a 330-nm-thick InGaAsP
slab. The emission from the quantum
wells was in the wavelength range of 1300
to 1600 nm, and these were embedded
within a free-standing membrane pat-
terned with a PC lattice.

Cavity-fill material
affects wavelength
The precise emission wavelength can be
controlled by changing the size of the
defect hole introduced into the lattice to
form the cavity or the lattice parameter
of the PC. Our lasers were tested by
microphotoluminescence, and were opti-
cally pumped at room temperature with
30-ns pulses of 3-us periodicity (A
830 nm). To test the influence of a
change in ambient refractive index on
the laser spectrum of a cavity, we have
backfilled our PC lasers with isopropyl
alcohol and methanol. The positions of
the resonances from one of our lasers
after immersion in air, isopropyl alcohol
(IPA), and methanol differ (see Fig. 2).
Wavelength shifts of 67-nm can be
observed when the laser is immersed in
IPA. This red shift corresponds to a
change in refractive index from 1.0 to
1.377, and yields roughly a 1-nm spectral
shift for a 0.0056 change in refractive
index. When IPA is replaced with
methanol (n=1.328), the laser resonance
experiences a blue shift of about 9 nm.
We have also tested structures with dif-
ferent defect-hole radii (r,_¢) within the
same PC slab to explore the integration
of multiwavelength PC lasers with litho-
graphically predetermined spectra. These
devices are particularly interesting as
compact multiwavelength light sources,
but are also useful if many reactions have
to be monitored at the same time. Indi-
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vidual reactions can be observed in laser
cavities that have predetermined spectral
signatures, and optically read by observ-
ing changes in the collective spectrum of
a multiwavelength laser array.

Three optical cavities were fabricated
within a common PC slab with lattice

FIGURE 3. A fabricated PC-laser structure
consists of three cavities integrated within the
same PC mirror (top); a detailed view of the
right-hand cavity is shown in the inset. Defect
holes are indicated by arrows, and their size
increases from right to left. Each cavity is
shown being pumped in turn (center, left to
right). The resonances detected in each cavi-
ty illustrate that the mode experiences a blue
shift as the size of defect hole increases.

constant =446 nm and r= 134 nm (see
Fig. 3). The sizes of the defect holes that
define the optical cavities varied from
Tomall = 74nm, 7, 4= 85 nm, and Tio =
97 nm. The distance between the three
cavities is 10 lattice periods, or approxi-
mately 4.5 um. To measure these lasers,
the cavities were pumped individually and
well-confined spectra obtained from each
of these cavities. The lasing wavelength of
these cavities could be tuned from
1420 nm (for rb[g) to 1550 nm (for r__)-
The narrow emission lines from laser
cavities with small mode volumes of less
than 107'® liters provide us with excellent
opportunities for chip-based integration

of optical spectroscopy systems. We have
demonstrated operation of such lasers in
various solvents and have shown that
shifts in refractive index of the ambient
material surrounding the laser cavities
can be measured by monitoring the laser
spectrum. Small changes in refractive
index or absorption can be detected
within femtoliter volumes of reagent, and
such devices can be integrated into large
arrays to permit the simultaneous analy-
sis of many reagents. a
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