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Abstract: Photonic crystal nanobeam cavities are versatile platforms of
interest for optical communications, optomechanics, optofluidics, cavity
QED, etc. In a previous work [Appl. Phys. Lett. 96, 203102 (2010)], we
proposed a deterministic method to achieve ultrahigh Q cavities. This
follow-up work provides systematic analysis and verifications of the
deterministic design recipe and further extends the discussion to air-mode
cavities. We demonstrate designs of dielectric-mode and air-mode cavities
with Q > 109, as well as dielectric-mode nanobeam cavities with both
ultrahigh-Q (> 107) and ultrahigh on-resonance transmissions (T > 95%).
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1. Introduction

High quality factor (Q), small mode volume (V) [1] optical cavities provide powerful means for
modifying the interactions between light and matter [2], and have many exciting applications
including quantum information processing [3], nonlinear optics [4], optomechanics [5,6], opti-
cal trapping [7] and optofluidics [8]. Photonic crystal cavities (PhC) [9, 10] have demonstrated
numerous advantages over other cavity geometries due to their wavelength-scale mode vol-
umes and over-million Q-factors [11–31]. Although small mode volumes of PhC cavities can
be easily achieved by design, ultrahigh Q factors are typically obtained using extensive param-
eter search and optimization. In a previous work [32], we proposed a deterministic method to
design an ultrahigh Q PhC nanobeam cavity and verified our designs experimentally. The pro-
posed method does not rely on any trial-and-error based parameter search and does not require
any hole shifting, re-sizing and overall cavity re-scaling. The key design rules we proposed, that
result in ultrahigh Q cavities, are (i) zero cavity length (L = 0), (ii) constant length of each mir-
ror segment (’period’=a) and (iii) a Gaussian-like field attenuation profile, provided by linear
increase in the mirror strength.

In this follow-up work, we provide numerical proof of the proposed principles, and system-
atically optimize the design recipe to realize a radiation limited cavity and waveguide coupled
cavity. Furthermore, we extend the recipe to the design of air-mode cavities, whose optical
energies are concentrated in the low-index region of the structure.

Nanobeam cavities have recently emerged as a powerful alternative to the slab-based 2-D
PhC cavities [17–22]. Nanobeams can achieve Qs on par with those found in slab-based ge-
ometries, but in much smaller footprints, and are the most natural geometries for integration
with waveguides [23–31]. Our deterministically designed cavities have similar structures to the
mode-gap cavities proposed by Notomi et al. [23], and later demonstrated experimentally by
Kuramochi et al. [33], as well as our own work [34]. We note that the same design principle dis-
cussed here could be directly applied to realize ultra-high Q cavities based on dielectric stacks
that are of interest for realization of vertical-cavity surface emitting lasers (VCSELs) and sharp
filters. Finally, it is important to emphasize that while our method is based on the framework of
Fourier space analysis [35–37], alternative approach, based on phase-matching between differ-
ent mirror segments, could also be used to guide the design, as well as to explain the origin of
deterministic ultra-high Q-factors in our devices [38, 39].

2. Numerical verification of the deterministic design approach

In this section, we use finite-difference time-domain (FDTD) simulations to systematically
study the design principles proposed in [32]. Figure 1(a) shows the schematics of the proposed
cavity structure [32]. It consists of an array of air-holes in decreasing radii, etched into a ridge

Fig. 1. (a) Schematic of the proposed nanobeam cavity. (b) FDTD simulation of the energy
density distribution in the middle plane of the nanobeam cavity.
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Fig. 2. (a) Mirror strengths of each mirror segment for different tapering profiles obtained
from the plane wave expansion method (’1’ indicates the mirror segment in the center of
the cavity). (b) Band diagram of the TE-like mode for f = 0.2 and f = 0.1. The green
line indicates the light line. The circle indicates the target cavity resonant frequency. (c)
Mirror strengths for different filling fractions, obtained using 3D band diagram simulation.
(d) Mirror strengths as a function of mirror number after quadratic tapering. (e) Radiation-
Q factors for nanobeam cavities with different cavity lengths between the two Gaussian
mirrors, obtained using 3D FDTD simulations. (f) Resonances of the cavities that have
different total number of mirror pair segments in the Gaussian mirror, and their devia-
tions from the dielectric band-edge of the central mirror segment, obtained using both
FDTD simulation and perturbation theory. (g) Hz field distribution on the surface right
above the cavity, obtained from 3D FDTD simulation. The structure has dimension of
a = 0.33μm,b = 0.7μm, the first 20 mirror segments (counted from the center) have f s
varying from 0.2 to 0.1, followed by 10 additional mirror segments with f = 0.1. (h) Hz

field distribution on the surface right above the cavity, obtained from the analytical for-
mula Hz = sin( π

a x)exp(−σx2)exp(−ξy2), with a = 0.33μm,σ = 0.14,ξ = 14. (i) Hz field
distribution along the dashed line in (g)&(h). Length unit in (g)-(i) is μm.
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waveguide. The hole-to-hole distances (“periodicity”) are constant. The structure is symmetric
with respect to the dashed line in Fig. 1(a). In contrast to the majority of other cavity designs,
current structure has no additional cavity length inserted between the two mirrors (L=0), that is
the hole-to-hole spacing between the two central holes is the same as the rest of the structure
(a). This minimizes the cavity loss and the mode volume simultaneously. The cavity loss is
composed of the radiation loss into the free space (characterized by Qrad) and the coupling loss
to the feeding waveguide (Qwg). Qwg can be increased simply by adding more gratings along
the waveguide. Qrad can be increased by minimizing the spatial Fourier harmonics of the cavity
mode inside the lightcone, achieved by creating a Gaussian-like attenuation profile [32]. The
optical energy is concentrated in the dielectric region in the middle of the cavity (Fig. 1(b)). In
order to achieve the Gaussian-like attenuation, we proposed to use a linearly increasing mirror
strength along the waveguide [32], which was achieved by tapering the hole radii.

First, we analyze the ideal tapering profile using plane wave expansion method and verify the
results with 3D FDTD simulations. The dielectric profile of the structure in the middle plane of
the cavity can be expressed as

1
ε(ρ)

=
1

εSi
+(

1
εair

− 1
εSi

)S(ρ) (1)

with

S(ρ) =
{

1 |ρ − r j| ≤ R
0 |ρ − r j|> R

r j = j · ax̂, a is the period, and j = ±1,±2... are integers. R is the radius of the hole. Using
plain wave expansion method [40] in the beam direction (x̂),

1
ε(x)

= κ0 +κ1eiGx +κ−1e−iGx + ... (2)

where G = 2π/a. The zeroth (κ0) and first (κ1) order Fourier components can be expressed
as [40]

κ0 =
f

εair
+

1− f
εSi

(3)

κ1 = 2 f (
1

εair
− 1

εSi
)
J1(GR)

GR
(4)

J1 is the first order Bessel function. Filling fraction f = πR2/ab is the ratio of the area of the
air-hole to the area of the unit cell. We note that the above expressions are calculated assum-
ing nanobeam cavity has infinite thickness (i.e 2D equivalent case). Better estimation can be
obtained by replacing εair and εSi with the effective permittivities.

The dispersion relation can be obtained by solving the master equation [41]:

c2

ε(x)
∂ 2E
∂x2 =

∂ 2E
∂ t2 (5)

Inside the bandgap, the wavevector (k) for a given frequency (ω) is a complex number, whose
imaginary part denotes the mirror strength (γ). For solutions near the band-edge, of interest
for high-Q cavity design [32], the frequency can be written as ω = (1− δ )

√
κ0πc/a (δ is the

detuning from the mid-gap frequency) and the wavevector as k = (1+ iγ)π/a. Substituting this
into the master equation, we obtain δ 2 + γ2 = κ2

1/4κ2
0 . The cavity resonance asymptotes to

the dielectric band-edge of the center mirror segment: wres → (1−κ j=1
1 /2κ j=1

0 )
√

κ j=1
0 πc/a ( j
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represents the jth mirror segment counted from the center), at which point the mirror strength
γ j=1 = 0. γ increases with j. With εair = 1 and εSi = 3.462, we calculate in Fig. 2(a) the γ − j
relation for different tapering profiles. It can be seen that quadratic tapering profile results
in linearly increasing mirror strengths, needed for Gaussian field attenuation [32]. To verify
this, we perform FDTD simulation and obtain the band diagram (Fig. 2(b)) and γ − f relation
(Fig. 2(c)). As shown in Fig. 2(d), linearly increasing mirror strength is indeed achieved after
quadratic tapering.

Next, with the optimized tapering profile, the cavity is formed by putting two such mirrors
back to back, leaving a cavity length L in between (Fig. 1(a)). Figure 2(e) shows the simulated
Q-factors for various Ls. Highest Qrad is achieved at zero cavity length (L=0), which supports
the prediction in [32] based on 1D model.

Third, we verify that the cavity mode has a Gaussian-like attenuation profile. Figure 2(g)
shows the Hz-field distribution in the plane right above the cavity, obtained from 3D FDTD
simulation. As shown in Fig. 2(h), this field distribution can be ideally fitted with Hz =
sin(πx/a)exp(−σx2)exp(−ξy2), with a= 0.33, σ = 0.14 and ξ = 14. The fitted value a agrees
with the ”period”, and σ agrees with that extracted value from Fig. 2(d): σ = dγ

dx
π
a = 0.13.

Figure 2(i) shows Hz distribution along the dashed line in Figs. 2(g) and 2(h). Therefore, we
conclude that zero cavity length, fixed periodicity and a quadratic tapering of the filling fraction
results in a Gaussian field profile, which leads to a high-Q cavity [32].

Finally, as we have pointed out in [32], current method results in a cavity whose resonance
is asymptotically approaching the dielectric band-edge frequency of the central mirror segment
(circled in Fig. 2(b)). The deviation from the band-edge frequency can be calculated using
perturbation theory [41, 42]:

δλ
λ

=

∫
δε|E‖|2 −δ (ε−1)|D⊥|2dV

2
∫

ε|E|2dV
(6)

E‖ is the component of E that is parallel to the side wall surfaces of the holes and D⊥ is the
component of D that is perpendicular to the side wall surfaces of the holes. Under Gaussian
distribution, the major field component Dy = cos(π/ax)exp(−σx2)exp(−ξy2), δε perturba-
tion occurs at r = ±( j− 1/2)a+R j, where Rj =

√
f jab/π denotes the radius of the jth hole

(counted the center), with j=2,3...N, N is the total number of mirror segments at each side.
Since the cavity mode has a Gaussian profile, 1/

√
σ characterizes the effective length of the

cavity mode, and scales linearly with N, with a nonzero intercept due to diffraction limit. For
large N, the intercept can be neglected, and thus σN =

√
20×0.142/N. Plug the perturbation

induced by the quadratic tapering from f = 0.2 to f = 0.1 into Eq. (6), the frequency offset
δλ/λ v.s N can be obtained. Figure 2(f) shows the frequency offset for different total number
of mirror pairs (N), calculated from the perturbation theory, as well as using FDTD simula-
tions. It can be seen that the deviation decreases as the number of modulated mirror segments
increases, and is below 1% for N > 15.

Therefore, we verify that an ultrahigh-Q, dielectric-mode cavity resonant at a target fre-
quency can be designed using the following algorithm:

(i) Determine a target frequency. For example in our case we want ftarget = 200THz. Since the
cavity resonant frequency is typically 1% smaller than the dielectric band-edge of the central
segment, estimated using the perturbation theory, we shift-up the target frequency by 1%, i.e.
fadjusted = 202THz.

(ii) Pick the thickness of the nanobeam - this is often pre-determined by the choice of the
wafer. For example, in our case, the thickness of the nanobeam is 220nm, determined by the
thickness of the device layer of our silicon-on-insulator (SOI) wafer.

(iii) Choose periodicity according to a = λ0/2neff, where neff is effective mode index of
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Fig. 3. (a) Schematic of the Gaussian nanobeam cavity, with an air hole in the symmetry
plane (dashed line). (b) Energy distribution in the middle plane of the cavity obtained from
3D FDTD simulation. (c)&(d) Hz field distribution on the surface right above the cavity:
(c) is obtained from 3D FDTD simulation and (d) is obtained from the analytical formula
Hz = cos( π

a x)exp(−σx2)exp(−ξy2), with a = 0.33μm,σ = 0.14,ξ = 14. (e) Hz field dis-
tribution along the dashed line in (c)&(d). Length unit: μm.

the cavity and can be estimated by numerical modeling of a strip waveguide that nanobeam
cavity is based on. However, we found that the absolute value of the periodicity is not crucial
in our design, as long as there exists a bandgap. Therefore, we pick neff = 2.23, which is a
median value of possible effective indices in the case of free standing silicon nanobeam (neff ∈
(1,3.46)). This results in a = 330nm.

(iv) Set nanobeam width. Large width increases the effective index of the cavity mode, pulls
the mode away from the light line, thus reducing the in-plane radiation loss. On the other hand, a
large beam width will allow for higher order modes with the same symmetry as the fundamental
mode of interest. Using band diagram simulations, we found that the width of 700nm is good
trade-off between these two conditions (Fig. 2(b)).

(v) Set the filling fraction of the first mirror section such that its dielectric band-edge is at
the adjusted frequency: 202THz in our case. Band diagram calculations based on unit cells are
sufficient for this analysis. We found that an optimal filling fraction in our case is fstart = 0.2
(Fig. 2(b)).

(vi) Find the filling fraction that produces the maximum mirror strength for the target fre-
quency. This involves calculating the mirror strength for several filling fractions (Fig. 2(c)), each
of which takes one or two minutes on a laptop computer. In our case we found that fend = 0.1.

(vii) Pick the number of mirror segments (N) to construct the Gaussian mirror: we found that
N ≥ 15 (on each side) are generally good to achieve high radiation-Qs.

(viii) Create the Gaussian mirror by tapering the filling fractions quadratically from fstart

(=0.2 in our case) to fend (=0.1) over the period of N segments. From the above analysis, the
mirror strengths can be linearized through quadric tapering (Fig. 2(d)).

(ix) Finally, the cavity is formed by putting two Gaussian mirrors back to back, with no
additional cavity length in between (L = 0). To achieve a radiation-limited cavity (Qwg >>
Qrad), 10 additional mirrors with the maximum mirror strength are placed on both ends of the
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Gaussian mirror. We will show in the next section, no additional mirrors are needed to achieve
a waveguide-coupled cavity (Qrad >> Qwg).

Besides the structure that were proposed in [32] (Fig. 1), the alternative structure which has
the air-hole in the symmetry plane, as shown in Fig. 3(a), also satisfies (i)–(ix). Both structures
result in dielectric-mode cavities, since the bandgap of each mirror segments red-shifts away
from the center of the cavity, and thus a potential well is created for the dielectric band-edge
mode of the central segment. The difference is that the energy maximum in the air-hole centered
cavity is no longer located in the middle of the structure, but instead in the dielectric region next
to the central hole (Fig. 3(b)). Figure 3(c) shows the Hz field profile in the plane right above
the cavity, obtained from FDTD simulation. Figure 3(d) shows the fitted field profile using the
same parameters that are used in the original structure shown in Figs. 2(g)–2(i), but with sine
function replaced by cosine function. Figure 3(e) shows the Hz distribution along the dashed
line in Figs. 3(c) and 3(d).

Armed with the analytical field profile of the cavities: Hodd
z (x) = sin(πx/a)exp(−σx2)

(Fig. 2) and Heven
z (x) = cos(πx/a)exp(−σx2) (Fig. 3), we can obtain the radiation losses

and far fields of the cavities using the Fourier space analysis [35]. The Fourier transforms can
be analytically obtained FT(Hodd

z ) = (exp(−(k+π/a)2/4σ)− exp(−(k−π/a)2/4σ))/i
√

8σ
and FT(Heven

z ) = (exp(−(k+ π/a)2/4σ)+ exp(−(k− π/a)2/4σ))/
√

8σ . Under σa2 << 1,
both distributions have their Fourier components strongly localized at k = ±π/a, as is veri-
fied by FDTD simulations in Fig. 4(a) and 4(b). Since Hodd

z (x) is an odd function, it always
has a zero Fourier component at k = 0. Therefore, dielectric-centered cavities (Fig. 1) should
have higher Q-factors. However, in high-Q cavity designs, σa2 << 1 is satisfied and thus
both dielectric-centered and air-centered cavities have comparable Q-factors. FDTD simula-
tion shows that the above Hodd

z and Heven
z cavities have Qtot = 3.8× 108 and Qtot = 3.5× 108

respectively. The mode volume of the Hodd
z cavity is 0.67(λres/nSi)

3, smaller than the Heven
z

cavity (V = 0.76(λres/nSi)
3).

The far field radiation patterns (obtained using FDTD simulations) of the two cavities are
shown in Figs. 4(c) and 4(d). The powers, in both cases, are radiated at shallow angles (> 70◦
zenith angle) to the direction of the waveguide. The Hodd cavity has even less radiated power at
small zenith angles, consistent with the above analysis. By integrating the zenith and azimuth
angle dependent far field emission, we found that 32% and 63% of the power emitted to +ẑ
direction can be collected by a NA=0.95 lens, respectively for Hodd cavity and Heven cavity.

3. Ultra-high Q, dielectric-mode photonic crystal nanobeam cavities

3.1. Radiation-Q limited and waveguide-coupled cavities

Since the dielectric-centered Hodd
z cavity has smaller V than the Heven

z one, we focus our dis-
cussion in the Hodd

z case. Using the above design algorithm, we design the Gaussian mirror
and put 10 additional mirrors with the maximum mirror strength on both ends of the Gaussian
mirror to obtain the radiation-limited cavity (Qwg >>Qtot). We find in Fig. 5 that Qtot increases
exponentially and V increases linearly as the total number of mirror pairs in the Gaussian mir-
ror (N) increases. A record ultra-high Q of 5.0× 109 is achieved while maintaining the small
mode volume of 0.9× (λres/nSi)

3 at N = 30.
Our design strategy has an additional important advantage over other types of photonic crys-

tal cavities [17–31], that is: the cavity naturally couples to the feeding waveguide, as the hole
radii decrease away from the center of the cavity. High-Q and high transmissions (T ) cavities
are possible with the above design steps (i)–(ix), with no additional ”coupling sections” needed.
We study T and Qtotal dependence on the total number of mirror pair segments in the Gaussian
mirror (N) in Fig. 5(b). Partial Q-factors (Qrad,Qwg) are obtained from FDTD simulations, and
T is obtained using T = Q2

total/Q2
wg [41]. As shown in Fig. 5(b), we achieve a nanobeam cavity
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Fig. 4. (a)&(b) The distribution of the spatial Fourier components of the cavity mode, ob-
tained from 3D FDTD simulation: (a) for the Hodd

z cavity and (b) for the Heven
z cavity

respectively. (c)&(d) The far field profile of the cavity mode obtained from 3D FDTD sim-
ulation: (c) for the Hodd

z cavity and (d) for the Heven
z cavity respectively. The inset cavity

structure shows the orientation of the waveguide direction in (c)&(d). Dashed line indicates
the symmetry plane.
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Fig. 5. (a) Total Q-factors (log(10) scale) and effective mode volumes (V/(λres/nSi)
3) of

nanobeam cavities for different total number of mirror pair segments in the Gaussian mirror.
In each case, 10 additional mirror segments with f=0.1 (maximum mirror strength) are
added on both ends of the Gaussian mirror. Therefore, the total-Q of the cavity is limited
by radiation-Q. A record ultra-high Q of 5.0×109 is achieved with a Gaussian mirror that
comprises 30 mirror segments and an additional 10 mirror pairs on both ends. (b) On-
resonance transmissions and total Q-factors (log(10) scale) v.s the total number of mirror
pair segments in the Gaussian mirror. In this case additional mirror pairs (10 of them) are
not included. A record high-T (97%) and high-Q (1.3×107) cavity is achieved at N = 25.

with Q = 1.3×107,T = 97% at N = 25.

3.2. Higher order modes of the dielectric-mode cavity

The ultra-high Q mode that we deterministically designed is the fundamental mode of the cav-
ity. Meanwhile, higher order cavity modes also exist. The number of higher order modes de-
pends on the width of the photonic band gap and total number of mirror segments in the Gaus-
sian mirror. To reduce the simulation time, we study the higher order modes of a waveguide-
coupled cavity, that has a total number of 12 mirror pair segments, possessing a moderate
Q-factor. Figure 6(a) shows the transmission spectrum obtained from FDTD simulation, by ex-
citing the input waveguide with a waveguide mode, and monitoring the transmission through
the cavity at the output waveguide. The band-edge modes are observed at wavelengths longer
than 1.6μm and shorter than 1.3μm. Figures 6(b)–6(d) shows the major field-component (Ey)
distribution of the three cavity modes. As expected, the eigenmodes alternate between symmet-
ric and anti-symmetric modes. Symmetry plane is defined perpendicular to the beam direction,
in the middle of the cavity (dashed line in Fig. 6). The total Q-factors of modes I-III are 10,210,
1,077 and 286 respectively. Effective mode volumes of them are 0.55, 0.85 and 1.06 respec-
tively. We note that transversely odd modes are well separated from the transversely symmetric
cavity modes, hence were not considered in Fig. 6.

4. Ultra-high Q, air-mode photonic crystal nanobeam cavities

4.1. Radiation-Q limited cavity

An air-mode cavity concentrates the optical energy in the low index region of the cavity. There-
fore, these cavities are of interest for applications where strong interactions between light and
material placed in the low index region of the cavity is required, including nonlinear optics [4],
optical trapping [7], biochemical sensing [8] and light-atom interaction [43]. The ultra-high
Q air-mode nanobeam cavity is realized by pulling the air-band mode of photonic crystal into
its bandgap, which can also be designed using the same design principles that we developed
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Fig. 6. (a) Transmission spectrum of the cavity from FDTD simulation. (b)-(d) The Ey field
distribution in the middle plain of the nanobeam cavity. Resonances and symmetries of the
modes are indicated in the plot. Symmetry plane is indicated by the dashed line. Length
unit in (b)–(d) is μm.
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Fig. 7. (a) TE band diagram for an air-mode nanobeam cavity. Hole radii r = 100nm,a =
330nm, b=1μm (red) and b=0.7μm (black). (b) Mirror strengths for different beam widths.
(c) Linearization of mirror strengths after quadratic tapering the beam widths.
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for dielectric-mode cavities. In contrast to the dielectric-mode case, the resonant frequency of
the air-mode cavity is determined by the air band-edge frequency of the central mirror seg-
ment. Then, to create the Gaussian confinement, the bandgaps of the mirror segments should
shift to higher frequencies as their distances from the center of the cavity increase. This can be
achieved by progressively increasing the filling fractions of the mirror segments away from the
center of the structure (instead of decreasing in the dielectric-mode cavity case). One way to
accomplish this is to increase the size of the holes away from the center of the cavity. While this
may be suitable for non-waveguide coupled (radiation-Q limited) cavities, it is not ideal for a
waveguide-coupled cavity. For this reason, we employ the design that relies on tapering of the
waveguide width instead of the hole size. Similar geometry was recently proposed by Ahn et.
al. [44] for the design of a dielectric-mode photonic crystal laser.

The same design steps can be followed as in the dielectric-mode cavity case, with the fol-
lowing changes: First, the adjusted frequency (198THz) is 1% lower than the target frequency
(200THz). (The thickness of the nanobeam is 220nm and period is 330nm, same as previous
case.) Second, the nanobeam width at the center of the cavity is wstart = 1μm (Fig. 7(a)), with
the hole radii kept constant at 100nm. Third, to create the Gaussian mirror, the beam widths
are quadratically tapered from wstart = 1μm to wend = 0.7μm, which produces the maximum
mirror strength (band diagrams shown in Fig. 7(a)). This procedure involves calculating the
mirror strength for several beam widths (Fig. 7(b)), each takes one or two minutes on a laptop
computer. As shown in Fig. 7(c), the mirror strengths are linearized after the quadratic taper-
ing. In order to achieve a radiation-Q limited cavity, 10 additional mirror segments are placed
at both ends of the Gaussian mirror that has beam width wend = 0.7μm.

Similar in the dielectric-mode cavity cases, Hodd
z and Heven

z air-mode cavities can be formed
by placing the air and dielectric in the central symmetric plane of the cavity, respectively. Again,
we will focus on Hodd

z , air-mode cavities and the conclusions will be valid to the Heven
z cavities

as well. Figure 8(a) shows the total Q of nanobeam cavities that have different total number
of mirror pair segments in the Gaussian mirrors. We have achieved a record ultra-high Q of
1.4×109, air-mode nanobeam cavity. As shown in Fig. 8(a), the effective mode volumes of the
air-mode cavities are much larger than the dielectric-mode cavities.

4.2. Cavity strongly coupled to the feeding waveguide

As we have pointed out, the tapering-width approach (as compared to taping hole radii) offers
a natural way of coupling the nanobeam air-mode cavity to the feeding waveguide. Since the
width of the beam is decreasing, the cavity naturally couples to the feeding waveguide. We
study T and Qtotal dependence on the total number of mirror pair segments in the Gaussian
mirror (N) using FDTD simulations. As shown in Fig. 8(b), we achieve nanobeam cavity with
Q = 3.0×106,T = 96% at N = 25.

4.3. Higher order modes of the air-mode cavity

The ultra-high Q cavity that we were able to design is the fundamental mode of the cavity.
Higher order modes coexist with the fundamental modes inside the band gap. Fig. 9(a) shows
the transmission spectrum of a waveguide-coupled air-mode nanobeam cavity, that has 15 mir-
ror pair segments in the Gaussian mirror. The band-edge modes are observed at wavelengths
longer than 1.6μm. The modes in the range of 1.2μm to 1.35μm are formed by the higher order
band modes in Fig. 7(a). Figures 9(b)–9(c) show the major field-component distribution (Ey)
of the two cavity modes inside the bandgap. The total Q-factors of these two modes are 23,935
and 5,525 respectively. The effective mode volumes are 2.32 and 3.01 respectively.
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Fig. 8. (a) Total Q-factors (log(10) scale) and effective mode volumes (V/(λres/nSi)
3) of

the nanobeam cavities for different total number of mirror pair segments in the Gaussian
mirror. In each case, 10 additional mirror segments with w=0.7μm are added on both ends
of the Gaussian mirror, so that the total-Q of the cavity is limited by radiation-Q. A record
ultra-high Q of 1.4× 109 is achieved with a Gaussian mirror that comprises 30 mirror
segments and 10 additional mirror pairs on both ends. (b) On-resonance transmissions and
total Q-factors (log(10) scale) v.s the total number of mirror pair segments in the Gaussian
mirror. In this case additional mirror pairs (10 of them) are not included. A record high-T
(96%) and high-Q (3.0×106) cavity is achieved at N = 25.

Fig. 9. (a) Transmission spectrum of the cavity from FDTD simulation. (b)&(c) The Ey

field distribution in the middle plain of the nanobeam cavity. Resonances and symmetries
of the modes are indicated in the plot. Symmetry plane is indicated by the dashed line.
Length unit in (b)&(c) is μm.
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5. Conclusion

We have presented a detailed analysis and a deterministic design of the ultra-high Q pho-
tonic crystal nanobeam cavities. With this method, Q > 109 radiation-limited cavity, and
Q > 107,T > 95% waveguide-coupled cavity are deterministically designed. These Q-factors
are comparable with those found in whispering gallery mode (WGM) cavities [45–47]. Mean-
while, the mode volumes are typically two or three orders of magnitude smaller than WGM
ones. Furthermore, energy maximum can be localized in either the dielectric region or air re-
gion with this method. Although we demonstrate designs for TE-like, transversely symmetric
cavity modes, the design method is universal, and can be applied to realize nanobeam cavi-
ties that support TM-polarized modes, as well as line-defect 2D photonic crystal cavities. We
believe that the proposed method will greatly ease the processes of high Q nanobeam cavity
design, and thus enable both fundamental studies in strong light and matter interactions, and
practical applications in novel light sources, functional optical components (filters, delay lines,
sensors) and densely integrated photonic circuits.
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