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Abstract: We demonstrate a reverse design method for realizing a broad 
range of optical filters based on integrated optical waveguides and 
experimentally verify example designs on a silicon-on-insulator (SOI) 
platform. The reflectance-based filters allow for control of both phase and 
amplitude of the optical response. Among this device’s many potential 
applications we highlight and numerically demonstrate its use for ultrafast 
on-chip pulse shaping. 
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1. Introduction 

The advent of photonic bandgap materials has led to incredible progress in the ability to 
confine and guide light [1–3]. However, the previously developed methods have operated 
either in broad stop and pass bands [4] or with extremely narrow-band – resonance – regimes 
[5]. Additional fields such as plasmonics [6,7] and metamaterials [8,9], provide methods for 
designing structures that can manipulate light, but even there, we see limitations on the 
diversity of spectral response from a single device. A significant advance is the possibility of 
designing a structure that can reflect spectral features of nearly arbitrary bandwidth, 
amplitude, and phase. We present a simple and fast method for designing such a structure. 
While this method can be generally applied to any material system where the refractive index 
profile can be controlled along one axis, we have concentrated on implementing arbitrary 
reflective filters in compact, on-chip silicon-on-insulator (SOI) waveguides. These integrated 
filters have myriad applications from on-chip signal routing to compact, ultra-fast pulse 
shaping [10]; the latter being of significant interest for high-speed optical communication and 
quantum control experiments [11]. 

2. Reverse design method and refinements 

In our recent work we have studied a region with a refractive index modulation in one 
dimension [12] and derived the Fourier transform relationship between the reflectance 
spectrum and the refractive index profile [n(x)]. This simple relationship is possible because 
we are able to use the wave impedance (inversely proportional to the refractive index in a 
plane wave) to simplify the form of Maxwell’s equations. The following, derived from 1D 
Maxwell’s equations in time harmonic form, describes the non-linear, ordinary differential 
equation for the ratio of the amplitudes of the reverse (reflected) to the forward (input) 
propagating wave: 

 ( ) ( ) ( ) ( )21
, 4 , 1 , lnˆ ˆ ˆ ˆ,

2
r x i r x r x n xλ π λ λ λ ′ + = − − ′    (1) 

where x̂ is a normalized position coordinate denoting the proportion of the optical path length 
that has been traversed, L is the total optical path length of the modulated region, λ is the free-
space wavelength of the light and “ ́ ” refers to differentiation with respect to x̂ . Solving for r 
at 0 amounts to finding the complex reflection coefficient of a region of interest with a known 
refractive index profile. Equation (1) is of the form of a Ricatti equation, a class of nonlinear-
first-order differential equations with no general analytical solution [13]. However, in the low 
reflection limit the nonlinear term - r2 - can be neglected and Eq. (1) has a simple solution of 
Fourier transform form [12]. 

In this work, we extend our work to the on-chip optical waveguide platform, where the 
modulation of the refractive index can be represented by a modulation of the effective index 
of the waveguide mode through variation in the width of the silicon waveguide [W(x), Fig. 
1(a)], as shown in Eq. (2): 
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where x is the real position coordinate (in contrast to the previously used normalized position 

coordinate) along the waveguide axis, and ( ) 1 eff

eff

dn
J

n dW
λ = −  takes into account the 

geometrical and material dispersion of the optical waveguide. As discussed earlier, we have 
dropped the positional dependence of r to indicate that we are finding the reflection 
coefficient of the whole modulated region. The dispersion (J) is calculated through an 
eigenfrequency analysis of the waveguide’s cross-section (Lumerical MODE solutions). The 
integration in Eq. (2) is performed over the length of the width-modulated region of the 
waveguide (l). Note that Eq. (2) is of the form of a Fourier transform. (The integration limits 
can be extended to infinity as the integrand evaluates to zero everywhere outside the width 
modulated region.) This gives us a powerful method for finding the width profile W(x) that 
results in the desired target reflection spectrum r(λ), as illustrated in Eq. (3): W(x) can be 
found via inverse Fourier transform followed by an integration from a known starting position 
and width. As an illustration of this approach, Fig. 1(c) shows an example target spectrum 
profile, while Fig. 1(d) shows the corresponding W(x). The SEM micrograph of the fabricated 
structure featuring this width-modulation profile, realized in the SOI platform, is shown in 
Fig. 1(a). 

 
( ) ( )

( )
( ) ( )2 2d 2

2 d
d

eff effn nW x r
exp i x

x J

λ λλ
π

λ λ λ

∞

−∞

    = −   
   

  (3) 

It is worth noting that other authors have arrived at the same Fourier transform design 
method by approaching the problem from the point of view of volume holography [14], and 
the application of coupled-mode theory to weakly coupled gratings [15–18]. However, these 
approaches were either constrained to the low reflection limit or the authors concentrated on 
tailoring the phase in a high reflection limit. In this work we show that this approach can be 
expanded to produce high reflectance filters with broad, highly variable spectral features as 
well as phases. The filters previously numerically demonstrated in [15] feature generally low 
reflectance values, although the author does note that an iterative approach could lead to 
designs where the low reflectance is not mandatory [15]. Here, we use a similar iterative 
approach, but also derive methods for achieving high reflectances without the need for 
iteration. We stress that the method laid out in this work is not based on coupled-mode theory 
or holography approximations but is analytically derived directly from Maxwell’s equations. 

In arriving at Eq. (2) we assumed small amplitudes of the reflection coefficient (weak 
reflection at every segment of the width-modulated waveguide) by neglecting r2 term. This 
approximation, however, may not be valid in certain cases, including high index contrast SOI 
waveguides. Indeed, when the designs obtained using Eq. (2) are tested either numerically 
(FDTD) or experimentally, the target r(λ) spectra are not exactly reproduced (Fig. 1(e)). In 
addition to large amplitude of the reflection coefficient, this discrepancy can also be attributed 
to another approximation that was made in our analysis: the usage of effective mode index 
(neff) as an approximation to impedance of a dielectric waveguide mode. Highly confined 
modes locate a significant portion of their fields outside of the core dielectric, resulting in a 
discontinuity of the electric field component perpendicular to the dielectric boundary (Fig. 
1(b)). As a result, the wave impedance (|Etransverse|/|Htransverse|) is not a well-defined quantity 
across the entire mode cross-section. In our original model [12], based upon plane waves, it 
was possible to establish an exact correspondence between the refractive index and the wave 
impedance, allowing us to reduce the problem of finding the reflection to a one dimensional 
differential equation. However, in the present work on-chip optical waveguide filters are 
considered, and additional steps need to be taken to compensate for the absence of an exact 
representation for the wave impedance. 
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Fig. 1. (a) An SEM micrograph of a fabricated waveguide showing the W(x) profile. (b) Cross-
sections of the electric field intensity of the modes supported by our ridge waveguides. The 
TE-like mode features an E-field discontinuity at sides of the waveguide, while the TM mode’s 
discontinuity is at the top and bottom of the waveguide. (c) An example target R(λ). (d) The 
width profile, W(x), that is obtained by applying the inverse Fourier transform obtained from 
Eq. (3) to the spectrum from b. (e) Simulated reflections, using FDTD analysis, from four 
iterations of our design method. The final step (thick black line) has come very close to 
replicating the spectrum from (b). Further optimizations are possible, though each subsequent 
iteration yields diminishing returns. 

If we examine the cross-sections of the modes supported by our waveguides (Fig. 1(b)), 
we find that major E-field component of the TE-like mode (Ex) is not continuous along the 
direction of waveguide width (x-axis), while the major E-field component of TM-like mode 
(Ey) is. Therefore, the ratio |Emajor|/|Hmajor| is well-defined along the waveguide width (all H-
field components are continuous in the absence of magnetic materials) in the case of TM-like 
modes. For this reason, one can expect that in the case of width-modulated waveguides (side-
etched grating) considered here, TM-like modes follow our theoretical model much better 
than the TE-like ones. This can be attributed to the lack of E-field discontinuity at the location 
of the width modulation. Therefore, in the rest of the text we consider TM-like modes – 
unless otherwise noted. We mention, however, that in the case of thickness-modulated 
waveguide (grating etched into the waveguide top) TE modes follow our model better (data 
not shown), again due to the lack of field discontinuity at the location of the grating 

After mitigating the effective index problem we considered two approaches to improve 
design performance and achieve a better correspondence between our intended and 
implemented reflection spectra – a job that becomes increasingly difficult at reflections 
approaching unity. The first is to use the linear properties of the Fourier transform to iterate 
the design process. This can be accomplished at relatively low computational cost thanks to 
modern waveguide simulation packages (MODE Solutions by Lumerical). We found that 
within 4 or 5 iterations we were able to get very near to an intended spectrum with large 
reflectance values. 

Figure 2(a) illustrates the iterative design process that allows the design of filters with 
reflectance values that match the intended spectrum. A(λ) is an artifact of this design process 
that compensates for the discrepancies arising from our assumption that 2 0r →  (it will also 
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deal with the effective index problem to some extent). Figure 1(e) shows simulated spectra of 
the iterative design process (in the case of TE-like modes) as A is recalculated and fed back 
into our design process. 

 

Fig. 2. (a) Iterative design process to compensate for inaccuracies due to assumptions in 
solution to Eq. (1). The result of the design process is checked via simulation, and any 
discrepancies in the resulting spectrum are used to feed back a wavelength dependent 
correction factor into the design process. (b) A comparison of the efficacy of our design 
method. The target reflection spectrum, shown in blue, was used to calculate the width profile 
using the Eq. (6). The reflection spectrum resulting from the obtained width profile was then 
found by solving Eq. (1) numerically, using an ordinary differential equation (ODE) solver, 
and results are plotted in red. The reflection spectra are also calculated using 3D FDTD 
modeling in the case of both TE and TM modes. Excellent agreement between ODE and 
FDTD solutions is found for TM mode, and is attributed to the lack of E-field discontinuity in 
the direction of interest (along waveguide width). 

A second method is even more efficient, and is based on finding a better approximate 
solution to Eq. (1) than that obtained by neglecting the non-linear term. This can be 
accomplished by dividing both sides of the equation by (1-r2), and by grouping the terms on 
the left hand side of the equation into approximations of transcendental functions: 
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The first term on the left is identically the differential of tanh−1(r) with respect to r, 
whereas the second term is only a very good approximation of tanh−1(r). This allows us to 
rewrite Eq. (4) as: 

 ( ) ( ) ( )1 1 1
tan h , ' 4 tan h , ln ,

2
ˆ ˆ ˆ

L
r x i r x n xλ π λ λ

λ
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The form of this equation allows us to instantly solve it, as it is identical to the previous 
version, up to a change of variable: r is replaced with the hyperbolic-arctangent of r. The 
power of this design method is illustrated in Fig. 2(b): one iteration produces results almost 
identical to the intended design. However, if better results are needed, due to the nonlinear 
nature of the hyperbolic function, non-linear optimization techniques need to be used. The 
operational equation used for determining the width profile of the waveguide to achieve a 
given reflectance spectrum becomes: 

 ( ) ( ) ( )
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Finally, we note that in all simulations and experiments that follow, we have designed our 
filters with a linear phase response. While in most cases a linear phase response, exhibiting 
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zero group velocity dispersion, is preferable, there are situations – like certain kinds of pulse 
shaping and/or material dispersion compensation – where a non-linear phase response may be 
needed. We note that nonlinear phase response can be easily integrated into the design 
method obtained from Eq. (2). The use of similar filters has been demonstrated to counteract 
the dispersive elements of on-chip optics [16–18]. 

3. Ultra-fast pulse shaping 

An important application of our filters and of arbitrary filters in general, is in shaping ultra-
fast pulses. Bulky apparatus is currently used for ultra-fast shaping, and it requires precision 
alignment [19,20]. Though integrated solutions have been demonstrated for the chirping of 
pules [18] - our approach based on the inverse design method allows us to generate arbitrary 
pulse shapes in both phase and amplitude in a compact and stable manner. The small footprint 
of the filters allows for a high-density integration of devices with different responses, thus 
enabling a single external pulse to generate many different pulse shapes in parallel. Ultra-fast 
pulse shaping is of particular interest in quantum coherence control and other quantum optics 
experiments where a wider range of pulse shapes beyond “transform limited” is required 
[21,22]. 

The key to pulse shaping is the control of amplitude and phase over a wide wavelength 
range [23]. As Eq. (2) solves for r (the reflection coefficient) rather than R (the reflectivity, or 
|r|2), the necessary conditions for ultra-fast pulse shaping are met. In this work we did not 
implement a non-linear phase because the pulses we were examining were not strongly 
affected by dispersion in the silicon waveguides. 

 

Fig. 3. Numerical analysis, using full 3D FDTD simulation, of ultra-fast pulse shaping. The 
sech2 input pulse is incident on two different width modulated filters designed to reflect (a) 
“triple Hamming” pulse (shown in light blue), and (b) “square” pulse (shown in purple) with 
constant amplitude over a wide range. In both cases input sech2 pulse is shown to the left of 
reflected pulses. 

To illustrate the concept theoretically we designed two structures that turn a realistic 150 
fs wide sech2 pulse at 1550 nm center wavelength (e.g. coming out of an optical parametric 
oscillator) into: i) triple pulses with a Hamming [24] envelope, and ii) a square-envelope 
pulse with a constant amplitude over a wide region. In both cases, the on-chip filter is 
designed using our inverse-design principle based on Eq. (6) as discussed above. The filters 
were designed for the TM mode of 220 nm thick SOI clad in SiO2. The spectral shapes of the 
filters can be seen in Figs. 4(b) and 4(c). To validate our results, we used 3-D finite difference 
time domain (FDTD, Lumerical Inc.) simulations to model the response of designed filters. 
Indeed, Figs. 3(a) and 3(b) show that a single Sech2 pulse launched into two different width-
modulated SOI waveguides, can be converted into three distinct Hamming pulses and a 
square pulse, respectively. All simulations are three dimensional with the mesh grid size of 1 
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nm, which is similar to the e-beam lithography resolution available to us. This is an excellent 
first demonstration for the viability of integrated femtosecond pulse shaping. 

The limitation of this shaping method is that it is entirely based on the reflection of the 
input light, so the available output pulses have a spectrum limited by the spectrum of the 
input light. The magnitude of the power reflected will also be less than or equal to that of the 
input pulse. This results in smaller amplitudes in the reflected signal as can be seen in Figs. 
3(a) and 3(b). The only way to avoid losing power is to use the filters that alter the phase of 
the pulse while leaving the amplitude untouched. Within these restrictions our filters behave 
admirably, giving high visibility peaks and the expected envelope shapes. 

4. Fabrication and testing 

When transferring a continuous modulation of a waveguide width onto an SOI sample 
through e-beam lithography, two problems occur. The first, is related to the finite length of 
devices that can be fabricated using e-beam lithography: the finite length of the device 
determines the highest bandwidth of the reflection spectrum that can be represented 
appropriately if an r spectrum with large ‘tails’ in its Fourier transform is chosen, there will 
be significant degradation in the resulting spectrum because a large proportion of the Fourier 
components will be lost. Second, errors arise from the finite resolution of e-beam lithography 
washing out the fine features in the r spectrum. Viewed through the prism of classical digital 
signal processing, these two issues would be equivalent to not sampling the data for a 
sufficiently long period in the time domain, and to obtaining an analog to digital conversion 
with insufficient bits to properly resolve the amplitude of the signal. This allows us to choose 
a “sweet spot” of the filter bandwidth and the length of the filter so that the W(x) profile can 
be defined using the electron-beam (e-beam) lithography tool available to us. 

For experimental demonstration, we fabricated the width modulated filters on SOI wafers 
(SOITEC) with a 220 nm device layer and a 2 µm buried oxide layer. The waveguides were 
written using a negative resist (XR 1541-6%) and 100 kV electron-beam lithography (Elionix 
7000). The exposure window was a 300 µm square with a dot-pitch of 1.25 nm. After 
development (TMAH 2.5%) the pattern was transferred to the device layer using reactive-ion 
etching (C4F8 and SF6). SU-8 Polymer waveguides were defined using e-beam lithography for 
spot size conversion. Finally, the device was capped using PE-CVD deposited silicon dioxide 
to enable facet polishing. Figure 4(a) shows an SEM micrograph of an example device prior 
to PE-CVD deposition. 

Filter characterization was performed with a scanned tunable laser (Santec TLS-510 C-
Band). Light was coupled onto the chip’s TM mode through a tapered, lensed fiber (Oz 
optics). An on-chip, 3-dB directional coupler was used to extract the reflected signal to an 
output arm and back to an SU-8 waveguide as depicted in Fig. 4(a). Figures 4(b) and 4(c) 
show example target spectra alongside experimentally measured spectra; the agreement 
between the two is excellent. In the absence of the equipment required to measure a time 
domain response of our filters, and based on the excellent agreement of the spectral response 
obtained by theory, 3D FTDT simulations and experimental characterization, we conclude 
that these filters would perform to their designed specification in terms of shaping pulses. 
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Fig. 4. (a) SEM micrograph of example device; the inset shows a magnification of the width 
modulated region. Cartoons show the flow of the experiment: light is launched from a tunable 
telecom laser through a lensed fiber, is then coupled through a polymer waveguide to the 
silicon waveguides through an inverse taper. The light reflected from the modulated 
waveguides is extracted using a directional coupler to another polymer waveguide, and finally 
collected through a second lensed fiber into a photodetector. The light on-chip is propagating 
in the TM mode (b) The spectral shape of the “triple Hamming” filter, overlayed with the 
target design (c) The spectral shape of the square-pulse filter as probed by the tunable laser. 
The dashed overlay represents our target design. The measured spectra in both (b) and (c) are 
normalized by the magnitude of the light transmitted through the filter. We note that in both 
cases the signal is distorted by Fabry-Perot resonances in the system (e.g. from the SU-8 
waveguide facets) as well as truncation effects due to the finite size and resolution of the 
width-modulated filters. 

5. Conclusions and future work 

We have demonstrated a reverse method for designing arbitrary filters with the footprint of an 
on-chip waveguide. We fabricated and measured filters designed using this method, and they 
exhibited excellent agreement with our theoretical prediction. In addition to allowing the 
design of arbitrary phase and amplitude filters these structures show a great promise in 
shaping ultrafast pulses as demonstrated through FDTD simulations. Therefore, we believe 
that this approach provides a novel and feasible platform for control of ultra-fast pulses with 
greatly reduced footprints and experimental complexity. In the future, we will look to 
implementing ultra-fast pulse shaping as well as using dynamic methods to tune the filter 
response. 
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