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We exploit recently developed topology-optimization tech-
niques to design complex, wavelength-scale resonators for
enhancing various nonlinear χ �2� and χ �3� frequency conver-
sion processes. In particular, we demonstrate aperiodic,
multi-track ring resonators and two-dimensional slab mi-
crocavities exhibiting long lifetimes Q ≳ 104, small modal
volumes V ≳ �λ∕2n�3, and among the largest nonlinear
overlaps (a generalization of phase matching in large-etalon
waveguides) possible, paving the way for efficient, compact,
and wide-bandwdith integrated nonlinear devices. © 2017
Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (050.1755) Computational

electromagnetic methods.
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Nonlinear frequency conversion (NFC) plays a crucial role in
many photonic applications, including ultrashort pulse shaping
[1,2], spectroscopy [3], generating novel states of light [4,5],
and quantum information processing [6]. A well-known ap-
proach for lowering the power requirements of such nonlinear
devices is employing optical resonators that confine light for
long times (dimensionless quality factors or lifetimes Q) in
small volumes V [7–14]. Although microcavity resonators de-
signed for on-chip, infrared applications promise some of the
smallest confinement factors available, their implementation is
highly limited by the difficult task of identifying wavelength-
scale (V ∼ λ3) structures supporting long-lived, resonant
modes at widely separated wavelengths and satisfying rigid fre-
quency matching and mode overlap constraints [15,16].
Recently, we proposed a computational framework based on
large-scale topology-optimization (TO) techniques that enables
the automatic discovery of multilayer and grating structures ex-
hibiting some of the largest second-harmonic generation
(SHG) figures of merit ever predicted [17].

In this Letter, we extend our TO formulation to allow the
possibility of more sophisticated nonlinear processes and apply
it to the problem of designing rotationally symmetric and slab
microresonators that exhibit high-efficiency SHG and sum

frequency generation/difference frequency generation (SFG/
DFG). In particular, we demonstrate multi-track ring resonators
and proof-of-principle two-dimensional (2D) slab cavities sup-
porting multiple, resonant modes (even several octaves apart) that
would be impossible to design “by hand.” Our designs ensure
frequency matching, long radiative lifetimes, and small (wave-
length-scale) modal confinement, while simultaneously maximiz-
ing the nonlinear modal overlap (or “phase matching”) necessary
for efficient NFC. For instance, we discover topology-optimized
concentric ring cavities exhibiting SHG efficiencies as high as
P2∕P2

1 � 1.3 × 1025�χ�2��2 �W−1�, even with low operational
Q ∼ 104, a performance that is on par with recently fabricated
60 μm diameter, ultrahighQ ∼ 106 aluminum nitride (AlN) mi-
croring resonators [14] (P2∕P2

1 ∼ 1.13 × 1024�χ�2��2 �W−1�);
essentially, our topology-optimized cavities not only possess
the smallest possible modal volumes ∼�λ∕n�3, but can also op-
erate over wider bandwidths by virtue of their increased nonlinear
modal overlap. As reviewed in Refs. [17–19], a typical topology-
optimization problem seeks to maximize or minimize an objective
function f , subject to certain constraints g , over a set of free var-
iables or degrees of freedom (DOF):

max ∕min f �ϵ̄α�; (1)

g�ϵ̄α� ≤ 0; (2)

0 ≤ ϵ̄α ≤ 1; (3)

where the DOFs are the normalized dielectric constants ϵ̄α ∈
�0; 1� assigned to each pixel or voxel (indexed α) in a specified
volume. The subscript α denotes appropriate spatial discretization
r → �i; j; k�αΔ with respect to Cartesian or curvilinear coordi-
nates. Depending on the choice of background and structural
materials, ϵ̄α is mapped onto a position-dependent dielectric con-
stant via ϵα � �ϵ − ϵbg�ϵ̄α � ϵbg. The binarity of the optimized
structure is enforced by penalizing the intermediate values ϵ̄ ∈
�0; 1� or utilizing a variety of filter and regularization methods
[18]. Starting from a random initial guess or completely uniform
space, the technique discovers complex structures automatically
with the aid of powerful gradient-based algorithms such as the
method of moving asymptotes (MMA) [20]. For an electromag-
netic problem, f and g are typically functions of the electric E
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or magnetic H fields integrated over some region which, in turn,
are solutions to Maxwell’s equations under some incident current
or field. In what follows, we exploit a direct solution of Maxwell’s
equations:

Δ ×
1

μ
∇ × E − ϵ�r�ω2E � iωJ; (4)

describing the steady-state E�r;ω� in response to incident cur-
rents J�r;ω� at frequency ω. While the solution of Eq. (4) is
straightforward and commonplace, the key to making optimiza-
tion problems tractable is to obtain a fast-converging and com-
putationally efficient adjoint formulation of the problem [18].
Within the scope of TO, this requires efficient calculations of
the derivatives ∂f

∂ϵ̄α
; ∂g∂ϵ̄α at every pixel α, which we perform by ex-

ploiting the adjoint variable method (AVM) [18].
Any NFC process can be viewed as a frequency mixing

scheme in which two or more constituent photons at a set of
frequencies fωng interact to produce an output photon at fre-
quency Ω � P

ncnωn, where fcng can be either negative or pos-
itive, depending on whether the corresponding photons are
created or destroyed in the process [21]. Given an appropriate
nonlinear tensor component χijk…, with i; j; k;… ∈ fx; y; zg,
mediating an interaction between the polarization components

Ei�Ω� and E1j, E2k;…, we begin with a collection of point
dipole currents, each at the constituent frequency ωn; n ∈
f1; 2;…g, such that Jn � ênνδ�r − r 0�, where ênν ∈
fê1j ; ê2k;…g is a polarization vector chosen so as to excite
the desired electric-field polarization components (ν) of the cor-
responding mode at an appropriate position r 0. Given the choice
of incident currents Jn, we solve Maxwell’s equations to obtain
the corresponding constituent electric-field response En, from
which one can construct a nonlinear polarization current
J�Ω� � ϵ̄�r�QnE

jcnj���
nν êi , where Enν � En · ênν and J�Ω�

can be generally polarized (êi) in a (chosen) direction that differs
from the constituent polarizations ênν. Here, (*) denotes com-
plex conjugation for negative cn and no conjugation otherwise.
Finally, maximizing the radiated power, −Re�R J�Ω�� · E�Ω�dr�,
due to J�Ω�, one is immediately led to the following nonlinear
topology-optimization (NLTO) problem:

maxϵ̄f �ϵ̄;ωn� � −Re

�Z
J�Ω�� · E�Ω�dr

�
; (5)

M�ϵ̄;ωn�En � iωnJn; Jn � ênνδ�r − r 0�;
M�ϵ̄;Ω�E�Ω� � iΩJ�Ω�; J�Ω� � ϵ̄

Y
n

E jcnj���
nν êi ;

M�ϵ̄;ω� � ∇ ×
1

μ
∇ × −ϵ�r�ω2;

ϵ�r� � ϵm � ϵ̄�ϵ̄d − ϵm�; ϵ̄ ∈ �0; 1�:
Writing down the objective function in terms of the nonlinear
polarization currents, it follows that the solution of Eq. (5), ob-
tained by employing any mathematical programming technique
that makes use of gradient information, e.g., the AVM [18],
maximizes the nonlinear coefficient (mode overlap) associated
with the aforementioned nonlinear optical process.

Multi-track ring resonators.We first apply our NLTO for-
mulation to the design of rotationally symmetric cavities for
SHG. We consider a material platform consisting of gallium
arsenide thin films cladded in silica. While we mainly focus
on the design of unloaded cavities here, a variety of techniques
can be employed to couple in and out of these cavities, includ-
ing dimpled fiber tapers [22] and vertical waveguiding layers
[23]. The result of the optimizations is described in Fig. 1
and Table 1, the latter of which summarizes the most impor-
tant parameters, classified according to the choice of m1

and m2, which denote the azimuthal mode numbers of funda-
mental and second-harmonic modes, respectively. (Note that
depending on the polarization of the two modes, different

Table 1. SHG Figures of Merit, Including Azimuthal Numbers m1;2, Field Polarizations, Lifetimes Q1;2, and Nonlinear
Coupling β̄, in Units of χ �2�∕4

��
�

p
ε0λ

3�, Corresponding to the Fundamental and Harmonic Modes of Various Topology-
Optimized Multi-Track Ring Resonators, with Cross Sections (Illustrated in Fig. 1) Determined by the Choice of
Thicknesses, Given in Units of λ1

�m1;m2� Polarization Q1 Q2
β

�
χ �2�

4
��
�

p
ε0λ3�

�
Thickness �λ1�

(0, 0) �Ez ; Ez� 105 3 × 104 0.041 0.39
(4, 8) �Ez ; Ez� 3.1 × 104 3 × 103 0.009 0.30
(5, 10) �Ez; Er� 8 × 103 3.7 × 104 0.008 0.18
(6, 12) �Ez ; Ez� 9.5 × 104 2.7 × 104 0.008 0.18
(10, 20) �Ez ; Ez� 106 1.2 × 104 0.004 0.22
(10, 21) �Ez; Er� 1.6 × 106 7.4 × 104 0.004 0.24

Fig. 1. Schematic illustration of topology-optimized multi-track
ring resonators. Also shown are the cross-sectional profiles of several
ring resonators, along with those of fundamental and second-harmonic
modes corresponding to the azimuthal mode pairs (0, 0), (6, 12), and
(10, 21), whose increased lifetimes and modal interactions β̄ (Table 1)
via a χ�2� process lead to increased SHG efficiencies.
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phase-matching conditions must be imposed [11,13,15],
e.g., m2 � f2m1; 2m1 	 1g, thus, in our optimizations, we
consider different possible combinations.) The parameter β̄
is the nonlinear coupling strength between the interacting
modes, which in the case of SHG is given by [17]

β̄ �
R
drϵ̄�r�E�

2E
2
1�R

drϵ1jE1j2
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

drϵ2jE2j2
p � ffiffiffiffiffi

λ31

q
: (6)

In Table 2, we also consider resonators optimized to en-
hance a SFG process involving three resonant modes,
ω1 � ω3 − ω2, with ω2 � 1.2ω1 and ω3 � 2.2ω1. Note that
two of these modes are more than an octave apart. The defi-
nition of the corresponding nonlinear overlap factor, i.e., the
generalization of Eq. (7), can be found in Refs. [15,24].

The resulting structures and figures of merit suggest the pos-
sibility of orders-of-magnitude improvements. In particular, we
find that the largest overlap factors β̄ are achieved in the case
m1 � m2 � 0, corresponding to highly confined modes with
peak amplitudes near the center of the rings [Fig. 1(a)], in
which case a relatively thicker cavity ≈0.4λ1 is required to mit-
igate out-of-plane radiation losses. From the optimized Q ‘s and
β̄, and assuming λ1 � 1.55 μm, we predict a SHG efficiency of
P2∕P2

1 � 1.3 × 1025�χ�2��2 �W−1�. As expected, both radiative
losses and β̄ decrease with increasing m, as the modes become
increasingly delocalized and move away from the center, result-
ing in larger mode volumes [Figs. 1(b) and 1(c)]. Compared to
the state-of-the-art microring resonator demonstrated in
Ref. [14], whose β̄ ∼ 10−3, our structures exhibit consistently
larger overlaps, albeit with decreased radiative lifetimes. The
main challenge in realizing multi-track designs is that, like pho-
tonic crystals and related structures that rely on careful inter-
ference effects, their Qs tend to be more sensitive to
perturbations. In the case of centrally confined modes with
m1 � m2 � 0, we observe the appearance of deeply subwave-
length features near the cavity center where the fields are mostly
confined. We find that these features are crucial to the integrity
of the modes since they are responsible for the delicate inter-
ference process which cancels outgoing radiation; therefore,
their absence greatly reduces the quality factors of the modes.
Overall, for m1 � m2 � 0, we find that for operation with
λ1 ∼ 1.55 μm, a fabrication precision of several nanometers
would be necessary to ensure quality factors on the order of
105. On the other hand, the optimized designs become increas-
ingly robust for larger m1; m2 ≫ 0 since they have fewer sub-
wavelength features and smaller aspect ratios. Figure 2 shows
distributions of the most important figures of merit for an en-
semble of (m1 � 6, m2 � 12) cavities subject to random, uni-
formly distributed structural (position and thicknesses)
perturbations in the range �−50; 50� nm. We find that while
the frequency mismatch and overlap factors are quite robust
against variations, the quality factors can decrease to ∼104.
Although the variations simulated here respect the rotational
symmetry and, thus, do not exactly correspond to experimental

imperfections, they provide a theoretical measure of sensitivity
of the optimized design to structural perturbations.

Slab microcavities. We now consider a different class of
structure and NFC process, namely DFG in slab microcavities.
In particular, we consider a χ�3� nonlinear process satisfying the
frequency relation ωs � ω0 − 2ωb, with ωs, ω0, and ωb denot-
ing the frequencies of signal, emitted, and pump photons, re-
spectively (see Fig. 3). Such a DFG process has important
implications for single-photon frequency conversion, e.g., in
nitrogen-vacancy (NV) color centers, where a single NV
photon λ0 � 637 nm is converted to a telecommunication
wavelength λs � 1550 nm by pump light at λb ∼ 2200 nm,
requiring resonances that are more than two octaves away from
one another [25]. In other words, the challenge is to design a
diamond cavity �n ≈ 2.4� that exhibits three widely separated
strongly confined modes with large nonlinear interactions and
lifetimes. Figure 3 presents a proof-of-concept 2D design that
satisfies all of these requirements. Extending to three-
dimensional (3D) slabs of finite thickness (assuming similar lat-
eral profiles and vertical confinement ∼ wavelength), one is led
to the possibility of ultralarge β̄ ∼ 0.2, with

β̄ �
R
drϵ̄�r�E�

0E
2
bEsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

drϵ0jE0j2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

drϵsjEsj2
p �R

drϵbjEbj2
� λ31: (7)

Note that the lifetimes of these 2D modes are bounded only
by the finite size of our computational cell (and, hence, are
ignored in our discussion), whereas in realistic 3D microcav-
ities, they will be limited by vertical radiation losses [7].

Table 2. Similar Figures of Merit as in Table 1, but for Multi-Track Rings Designed to Enhance a SFG Process Involving
Light at ω1 � ω3 − ω2, ω2 � 1.2ω1, and ω3 � 2.2ω1, with β̄ Described in Ref. [15]

ω1:ω2:ω3 �m1;m2;m3� Polarization �Q1;Q2;Q3� β

�
χ �2�

4
��
�

p
ε0λ3�

�
Thickness �λ1�

1:1.2:2.2 �0; 0; 0� �Ez; Ez ; Ez� �1.8 × 104; 1.4 × 104; 7800� 0.031 0.38

Fig. 2. Statistical distribution of lifetimes Q1;2, frequency mismatch
Δω � jω1 − ω2∕2j, and nonlinear coupling β̄, corresponding to the
multi-track ring of Fig. 1 associated with the azimuthal mode pair
(6, 12). The positions of every interface are subject to random varia-
tions of maximum extent 	36 nm (blue line) or 	54 nm (red line).
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Despite the 2D aspect of this slab design, and in contrast to the
fully 3D multi-track ring resonators above, these results provide
proof of the existence of wavelength-scale photonic structures
that can greatly enhance challenging NFC processes. One ex-
ample is the NV problem described above, which is particularly
challenging if a monolithic all-diamond approach is desired, in
which case both single-photon emission and wavelength con-
version are to be seamlessly realized in the same diamond cavity
[25]. A viable solution that was recently proposed is the use of
four-wave mixing Bragg scattering (FWM-BS) by way of whis-
pering gallery modes [25,26], which are relatively easy to phase-
match but suffer from large mode volumes. Furthermore,
FWM-BS requires two pump lasers, at least one of which has
a shorter wavelength than the converted signal photon, which
could lead to spontaneous downconversion and undesirable noise,
degrading quantum fidelity, in contrast to the DFG scheme above,
based on a long-wavelength pump [25].While the geometry given
in Fig. 3 might prove challenging, we expect that an experimental
realization will soon become a reality given the rapidly maturing
diamond fabrication technologies [27,28].
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fined and widely separated modes (ωs ;ωb;ω0) that are several octaves
apart. The modes interact strongly via a χ�3� DFG scheme dictated by
the frequency relation ωs � ω0 − 2ωb, with ω0 � 2.35ωs and
ωb � 0.68ωs , illustrated by the accompanying two-level schematic.
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