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Crystals are ubiquitous in nature and are at the heart of material research, solid-state science, and quantum physics.
Unfortunately, the controllability of solid-state crystals is limited by the complexity of many-body dynamics and the
presence of defects. In contrast, synthetic crystal structures, realized by, e.g., optical lattices, have recently enabled the
investigation of various physical processes in a controllable manner, and even the study of new phenomena. Past realiza-
tions of synthetic optical crystals were, however, limited in size and dimensionality. Here we theoretically propose and
experimentally demonstrate optical frequency crystal of arbitrary dimensions, formed by hundreds of coupled spectral
modes within an on-chip electro-optic frequency comb. We show a direct link between the measured optical transmis-
sion spectrum and the density of states of frequency crystals in one, two, three, and four dimensions, with no restrictions
to further expanding the dimensionality. We demonstrate that the generation of classical electro-optic frequency comb
can be modeled as a process described by random walks in a tight-binding model, and we have verified this by measuring
the coherent distribution of optical steady states. We believe that our platform is a promising candidate for exploration
of topological and quantum photonics in the frequency domain. © 2020 Optical Society of America under the terms of the
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1. INTRODUCTION

While nearly all solid-state crystal structures occurring in nature
are three-dimensional, recent research efforts have resulted in
the discoveries of lower-dimensional structures such as graphene
or carbon nanotubes. Increasing the dimensionality of solid-
state crystals is, however, implausible since they are bound by
the three-dimensional Euclidian space. Extending the concept
of high-dimensional spaces to crystal structures is an intriguing
concept that has been studied from a theoretical standpoint [1,2].
In contrast to solid-state crystals, synthetic structures, realized by,
e.g., optical lattices [3–11], have recently enabled the investigation
of various physical processes in a controllable manner [4–9] and
even the study of new phenomena [10,11]. High-dimensional syn-
thetic crystal structures are of significant interest: they can be used
to investigate complex dynamics of solid-state materials, where,
e.g., the impact of forces, gauge fields, defects, or multi-particle
interactions could be mapped to higher dimensions [12–14].
Furthermore, by mapping one system onto another with higher
dimensionality, it becomes possible to solve certain problems more
efficiently, which is the working principle of reservoir computers
[15]. Synthetic crystals are also ideally suited to study complex
dynamics in a highly controllable manner, since they are not

restricted by physical space and can thus provide unique properties
including high dimensionality. Optics, in particular, provides
a powerful platform since the modes of light can be described
by the same equations that govern the dynamics of many other
physical systems. The realizations of synthetic optical structures
have included measurements of classical and quantum correlations
[4], Bloch oscillations [5], Anderson localization [6], Ising spin
chains [7], quantum random walks [8], topological structures
[9], as well as parity-time [10] and super-symmetric [11] lattices.
Past realizations of synthetic photonic lattices were, however,
limited in size and dimensionality, as they mainly relied on cou-
pled optical waveguides or photonic crystals [5–11], i.e., a spatial
degree of freedom on a two-dimensional plane. Recently, synthetic
crystals have been theoretically proposed [12,13,16–19] and
experimentally realized [20] employing the frequency domain of
light.

Here we show that electro-optic frequency combs [21] can
be modeled as a synthetic optical frequency crystal in high-
dimensional space by means of a tight-binding model. In our
approach, discrete lattice points are formed by spectral modes
of an optical microring resonator realized in a thin-film lithium
niobite (LN)-integrated photonic platform [22], while the cou-
pling between lattice points is controlled by electro-optic phase
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modulation, enabled by the second-order nonlinearity of LN.
Light coupled into the frequency crystals experiences coherent
scattering and interference at different lattice points, in direct
analogy to electron behavior in solid-state crystals. We show that
it is possible to directly measure the density of states (DOS) of
the frequency crystals with different dimensions and furthermore
measure the signatures of coherent scattering processes on clas-
sical steady states such as Bloch oscillation and two-dimensional
random walks.

2. FREQUENCY CRYSTALS AND DENSITY OF
STATES

The tight-binding model is one of the most fundamental models
in solid state physics [23] and is also extensively studied in optics:
for example, it has been used to describe the physics of actively
mode-locked lasers [24]. The tight-binding model assumes that
particles (such as electrons or, here, photons) are localized at spe-
cific positions of the crystal lattice, and that they can hop between
neighboring lattice points while preserving phase coherence.
Optical tight-binding systems have in the past been realized using
spatial modes in coupled optical waveguides [4–6,25] or tempo-
ral modes in coupled resonators with different round-trip times
[10,26]. In contrast, here we experimentally realize synthetic
crystal [13,16–19] utilizing the discrete frequency modes of a LN
microring resonator [21]; see Fig. 1 and Supplement 1. By applying
an electronic radio-frequency (RF) signal with a frequency equal
to the separation between adjacent frequency modes (known as
free spectral range, FSR), optical coupling can be initiated, where
the coupling strength can be adjusted by the strength of the elec-
tric driving signal. Such an electro-optic resonator driven by a
single-tone RF signal, commonly referred to as an electro-optical
frequency comb source [21,27], can also be described in a one-
dimensional tight-binding lattice [17] with a hopping rate related
to the applied RF power. We here show that such a tight-binding
frequency crystal representation is not limited to one-dimensional
realizations. For example, using two RF signals (both only very
slightly detuned from the resonator FSR), a photon placed in one
optical resonance [Fig. 1(b)] can hop into neighboring resonances
by the driving RF signal with a Hamiltonian described as

H =
N∑

j=−N

(
ω j a

†
j aj +

d∑
i=1

�i cosωi t
(

a †
j a j+1 + h.c.

))
,

where a j is the annihilation operator for mode j of the resonator
with frequency ω j , �i is the coupling strength induced by the
RF modulation, ωi is the frequency of the RF signal, and d is the
total number of RF signals (d = 2 in this example). Such a system
can be described by a two-dimensional tight-binding model;
see Supplement 1. Remarkably, we demonstrate that the same
principle can be extended to three, four, and many more dimen-
sions using different RF driving signals. Here each additional RF
frequency tone can span an additional spectral dimension; see
Fig. 1(b) and Supplement 1. Importantly, individual frequency
modes within the microring resonators can be unambiguously
mapped to individual lattice points within the crystal’s synthetic
frequency space; see Fig. 1. This high level of control and one-to-
one mapping of spectral modes in real frequency space to lattice
points in synthetic frequency space enables the experimental
investigation of crystal structures in high dimensions.

(c)

(b)

(a)

Fig. 1. Optical frequency crystals generation in electro-optic fre-
quency comb source. (a) Schematic of the electro-optically modulated
resonator used to generate the frequency crystals. The device consists of a
waveguide-coupled race-track resonator with electrodes placed around it.
The high-dimensional frequency crystals are formed by modulating the
device with multiple, slightly detuned, RF signals (here two RF signals
are shown for illustration). This gives rise to multiple excitations of each
race-track resonance, each representing a crystal lattice point. (b) The
tight-binding crystals can be represented in synthetic frequency space as
fixed lattice points (yellow circle), where coupling between neighboring
lattice points is mediated by electro-optic modulation due to the applied
RF field. By modulating simultaneously with different frequencies, high-
dimensional lattices can be generated in synthetic frequency space. (c) As a
result, each optical resonance (mode of a resonator) represents one lattice
point, one crystallographic direction, or one crystal plane of the synthetic
frequency crystal when one, two, or three RF tones are applied, respec-
tively. Within each resonance, the spacing between optical excitations is
determined by the frequency difference between the RF driving signals.

Implementing the tight-binding model to describe the electro-
optic frequency comb formation, we show that the frequency
crystal’s DOS can be directly measured by probing the opti-
cal transmission spectrum of the resonator; see Supplement 1.
Specifically, we use input-output theory of optical resonators
to establish a direct relationship between the optical transmis-
sion T(1) and DOS D(1) of the frequency crystals of arbitrary
dimension, which is given by

T(1)= 1− 2π
κe

Nd
t

D(1),

where 1 is wavelength detuning from the resonance center, κe

is the external coupling rate of the resonator, d is the number of
RF tones, and Nt is the total number of cavity resonance modes
coupled by one RF tone (~ is set to 1). The expression can be
understood by considering that the larger DOS at given optical
detuning corresponds to the larger the number of optical modes’
excitation in reciprocal space of the frequency crystal. This leads to
a larger effective optical “absorption” within the resonator, and thus
smaller transmission; see Supplement 1. These results show that
measuring the transmission spectrum of cavity resonance, using
a tunable continuous-wave (CW) laser at telecom wavelengths,
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Fig. 2. DOS of high-dimensional frequency crystals. By scanning
an excitation laser through the optical resonances, it becomes possible
to directly measure the DOS of the frequency crystals. Shown is the
measured normalized optical transmission (blue trace) for one- to four-
dimensional crystals, superimposed with the analytical model (orange
trace) based on the DOS of the frequency crystal. The grey shades
represent the linewidth of the unmodulated resonance. a.u., arbitrary
unit.

represents a direct measurement of the DOS of the frequency crys-
tal. Leveraging this analogy, we experimentally probed the DOS of
one-, two-, three-, and four-dimensional frequency crystals, using
up to four RF drives, and we found the result to be in excellent
agreement with theoretical predictions (see Fig. 2). Furthermore,
the resonances of a modulated resonator significantly broaden due
to the formation of band structures of tight-binding frequency
crystal, supporting a large number of spectral modes, which would
not be supported in a static resonator; see Fig. 2. Here the cavity
resonances are extracted from the raw measured data by fitting and
removing the background Fabry–Perot resonance generated by
reflection from chip facets. The FSR of the cavity is 10.453 GHz,
and four different RF signals with frequency close to the FSR but
detuned by 1 MHz from each other are applied (see Supplement 1).
We note that the DOS of one-dimensional frequency lattices has
recently been experimentally investigated [20].

3. RANDOM WALKS IN FREQUENCY CRYSTALS

A particularly important feature described by a tight-binding
model is the occurrence of coherent random walks, which arise
from the phase-coherent step-wise propagation of particles in a
lattice [28]. Coherent random walks are also known as quantum
walks [29]. Quantum walks with noninteracting photons can be
probed with classical light, as each photon within the input beam
undergoes the quantum walk, interferes with itself, and there is no
interaction between photons [4,14]. Exciting our frequency crystal
with noninteracting photons that have a narrow spectral linewidth
(i.e., driving a single lattice point of the crystal in synthetic space) is
expected to give rise to coherent random walk dynamics in the fre-
quency domain, resulting in spectral spreading for each round-trip
in the resonator [Fig. 3(a)]. However, photons that are spectrally
narrow enough to only excite a single resonance intrinsically have
to have a temporal duration much longer than the round-trip time
of the resonator. For this reason, a description using individual
round-trips cannot adequately describe the dynamics. In experi-
ment, instead of experiencing discrete steps, multiple steps of the

(a) (b)

(c) (d)

Fig. 3. Random walks and Bloch oscillations in one-dimensional
frequency crystals. (a) In the absence of RF fields, CW laser excita-
tion of the ring resonator leads to the excitation of one spectral mode
(mode number 0), which is equivalent to the excitation of a single lattice
point of a synthetic crystal. With RF fields are applied, photons can
hop to neighboring optical modes, giving rise to a random walk and
spectral broadening. Numerical simulations show that spectral modes
with increasing mode number can be excited as light completes more
round-trips (RTs) inside the resonator. Here the frequency of the RF
drive was perfectly matched to the FSR of the resonator. (b) If the RF
driving signal is detuned form the resonator FSR, an effective linear force
is imposed, which leads to Bloch oscillations in the frequency domain.
(c) In experiment, when the frequency crystal is excited with photons that
are spectrally narrow enough to excite only a single lattice point, their
temporal duration has to be larger than multiple round-trips. In such
narrowband excitation, all round-trips of the random walks coherently
interfere over the coherence time of the photon, forming a steady-state
output with characteristic exponentially decaying spectrum. (d) In the
presence of Bloch oscillations, a sharp cutoff in the optical output spec-
trum is measured, which arises from the oscillations in the random walks.
The insets in (c) and (d) show numerical simulations for different RTs
to illustrate the effect arising from the coherent addition of multiple
coherent random walk round-trips.

coherent random walk coherently interfere over the coherence
time of the photon, forming a steady-state output when pumped
classically; see Fig. 3(c) and Supplement 1. The interpretation
here shows another way to understand the process of electro-optic
frequency comb generation [21] and provides a means to model
electro-optical combs at the single-photon level in the future.

Bloch oscillations are another well-known effect in solid-state
physics, which occur in the presence of a linear force in the crystal.
Theoretical considerations of one-dimensional frequency crystals
have predicted that a linear force can be induced if the RF driv-
ing field is detuned from the spectral separation of the microring
resonator modes [17]. In particular, with an RF modulation fre-
quency significantly detuned from the FSR, spectral modes are
generated detuned from the center of the resonances, which in
turn induces additional phase shift. This effect is analogous to a
phase shift induced by a linear force in solid-state crystals that are
responsible for Bloch oscillations [17,30]. In the frequency crystal,
these Bloch oscillations result in the relocalization of the light at the
input frequency after a certain number of round-trips; see the sim-
ulation in Fig. 3(b). When excited with spectrally narrow photons,
multiple round-trips coherently interfere over the coherence time
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Fig. 4. Probing coherent random walks in two-dimensional synthetic crystals. (a). Illustration of possible paths that photon can take after four random
walk steps (i.e., round-trips), if placed in the center of the 2D synthetic lattice. If the photon propagation is phase coherent, all possible paths leading to the
same lattice point interfere, resulting in interference patterns in the probability distribution of the photon location in the lattice; see (b) for 25 simulated
round-trips (RT). If the frequency crystal is excited with spectrally narrow photons (single lattice point excitation), multiple round-trips (RT= 1, 2, ...,N)
coherently interfere, leading to a steady-state photon probability distribution in synthetic frequency space (the color and z axis represent the amplitude in
logarithmic scale); see (c). The distribution in synthetic space can be mapped to measurable real frequency space; see Fig. 1. The emission spectrum in real
frequency space was measured with an optical spectrum analyzer [(shown in (d)], while the spectral content within individual resonances was measured
using heterodyne detection [shown in (e)–(h)]. As the spectral content within individual resonances is traced through the steady state in synthetic space,
(e)–(f ) broad spectra were expected and measured close to the excitation, while (g)–(h) narrow spectra were measured further away from the excitation.

of the photon, and the resulting steady-state solution shows a spec-
trum with interference fringes and clear cutoffs in the spectrum,
which arises from the Bloch oscillations. In experiment with a CW
pump, the cutoffs in the measured optical spectrum [Fig. 3(d)]
agree with the simulations and represent a measured signature of
Bloch oscillations in the frequency domain of light.

Considering two- and higher-dimensional frequency crystals,
random walks are expected to appear in the synthetic frequency
space [schematic in Fig. 1(b)], which maps into measurable
signatures in real frequency space [schematic in Fig. 1(c)]. In a
two-dimensional frequency crystal (formed by two RF modulation
frequencies), photons positioned in a single lattice point can “hop”
to one of the four nearest-neighbor lattice points per round-trip.
Figure 4(a) shows examples of possible paths that a photon can
take if placed at a single lattice point [e.g., at the center of Fig. 4(a)]
within a 2D synthetic lattice. In classical, incoherent random
walks, the different possible paths are independent, leading to a
Gaussian probability distribution. In contrast, in coherent random
walks, all possible paths are phase coherent and interfere, lead-
ing to a non-Gaussian probability distribution. We numerically
simulated the probability distribution of a photon propagating in
a frequency crystal, finding clear signatures of two-dimensional
coherent random walks; see Fig. 4(b) for the simulated photon
distribution after 25 round-trips. If excited with spectrally narrow
photons, multiple random-walk steps coherently interfere and lead
to a steady-state photon distribution in synthetic frequency space;
see Fig. 4(c). The simulations show that as a consequence of the
two-dimensional random walk, many spectral modes are excited

within resonances close to the excitation frequency, while only
a few frequency modes are excited for resonances far away from
the excitation. Importantly, the photon distribution in synthetic
space can be mapped onto the measurable real frequency space
[see Fig. 1(c)], where the spectral content within resonances of the
microring resonator represent cross sections through the synthetic
frequency space; see Figs. 4(c) and 4(d). Using a heterodyne detec-
tion technique, we measure the spectral content of the resonances
close to and far away from the excitation one; see Figs. 4(e)–4(h).
As predicted theoretically, cavity resonances close to the excitation
frequency contain many spectral modes [see Figs. 4(e) and 4(f )],
while cavity resonances further away from the excitation contain
significantly fewer lines (see Figs. 4(g) and 4(h)]. Thus, our mea-
surements are consistent with predictions from the tight-binding
model and two-dimensional coherent walks. Importantly, the
observed spectral localization is relevant for the generation of broad
electro-optic combs. Indeed, it has been shown that the spectral
extent of electro-optic combs is mainly limited by a cutoff imposed
by detuning of spectral modes from them center of the cavity res-
onances [21]. The observed random walks in frequency crystals
might counter spectral cutoffs in the two-dimensional case. In par-
ticular, the process forces the photons to propagate mainly within
the center of the resonances, where it experiences smaller resonator-
induced phase shifts (i.e., linear forces) and therefore could
enable broad comb generation when driven with multiple RF
tones.
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4. CONCLUSION AND OUTLOOK

In conclusion, we have theoretically proposed and experimentally
demonstrated high-dimensional synthetic frequency crystals
by driving an electro-optic resonator with multiple RF signals.
Optical transmission measurements are demonstrated to be a pow-
erful tool for the direct characterization of the DOS of frequency
crystals. Theoretical simulation was applied to predict the signa-
tures of Bloch oscillations and coherent random walks in frequency
crystal. These results were also confirmed by our measurements in
one- and two-dimensional frequency crystals. Furthermore, we
performed, to the best of our knowledge, the first experimental
characterizations of tight-binding systems with dimensionality
larger than three. Our measurements were performed using spec-
trally narrow input light. In the future also excitation with light
spectrally broader than the separation of synthetic lattice points
can be investigated, which would correspond to exciting the syn-
thetic crystal not in a single lattice point but in a superposition
of points. Additionally, more complex RF signals can be imple-
mented to change the lattice structure of the crystals. For example,
it has been theoretically proposed that complex synthetic structures
with nontrivial topologies could be generated by using multiple
coupled and modulated resonators [23]. Our work also provides
fundamental insight into the nature of electro-optical frequency
comb formation, especially when driven with multiple RF signals.
Finally, even though we used only classical light for the experi-
mental realization, the measured features show clear signatures of
quantum walks of noninteracting photons, which opens the door
for future investigations using excitation with quantum light. In
particular, we expect that our platform will enable new oppor-
tunities in frequency-domain quantum information processing
[31,32] by exciting frequency crystals with, e.g., squeezed [33] or
frequency-entangled [34] optical quantum states.
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