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Photonic crystal waveguide-mode
orthogonality conditions and

computation of intrinsic waveguide losses
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We simulate the propagation of light in a W1 planar photonic crystal waveguide with the three-dimensional
finite-difference time-domain method and apply an inner product against previously calculated mode profiles
to the simulated field cross sections. We show that this inner product satisfies mode orthogonality for both
photonic crystal waveguides and segmented waveguides and use the obtained data to evaluate waveguide
losses. © 2003 Optical Society of America
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1. INTRODUCTION
Photonic crystals1 have attracted considerable attention
because of their utility in controlling the flow of light on
very small length scales. Planar photonic crystals
(PPCs)2 represent particularly promising structures for
integrated optics since their planar fabrication allows the
use of wafer-scale microelectronics fabrication techniques.
In particular, line defects formed in a PPC by changing
the properties of one or several rows of holes3,4 can be
used for waveguiding. In such a system the guided wave
is confined in the vertical direction by total internal re-
flection and in the lateral direction by distributed Bragg
reflection or confinement based on effective index. Re-
cently, propagation losses as low as 11 dB/mm have been
reported for silicon-on-insulator-based photonic crystal
waveguides.5 Losses can be due to material absorption,
surface roughness, fabrication tolerance, or intrinsic cou-
pling to free space. The coupling to free space from pho-
tonic crystal modes and photonic crystal waveguide
modes has been used for light extraction6 and experimen-
tal mode mapping.7 Several experimental8,9 and
theoretical8–14 investigations of the intrinsic losses of pho-
tonic crystal waveguides have been published. In this
paper we present a novel method for evaluating intrinsic
losses with finite-difference time-domain (FDTD)15 simu-
lations. Intrinsic photonic crystal waveguide losses have
previously been investigated by FDTD simulations,8–14

but previous methods using FDTD simulations were
based on evaluating the power transmission of a device16

or the intensity decay along the waveguide.8,14 In both
cases, distinguishing insertion losses due to mode mis-
match from propagation losses is difficult. In the first
case, several simulations need to be done to find the
asymptotic value of losses as a function of device length
(and to ensure that there is no tunneling), and in the sec-
ond case the simulation needs to be propagated for a long-
enough distance to ensure that the field has converged to
a waveguide mode. Both methods require simulations on
the order of the length scale required for the field to con-
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verge to a mode. In Ref. 14, mode profiles are calculated
but are not used for the propagation-loss calculations.
We propose to propagate the field for a short distance (a
few lattice constants) and to use previously calculated
mode profiles to filter out the fraction of the field that be-
longs to the waveguide mode. We will show that a con-
served functional commonly used as an inner product for
continuous waveguides can also be used for photonic crys-
tal waveguides and segmented waveguides.

We analyze a W1 waveguide formed by leaving out one
row of holes in a triangular lattice planar photonic crystal
of lattice parameter a, radius r 5 0.3a, and slab thick-
ness t 5 0.577a.8 The slab has an index of 3.43, and the
holes and the cladding have an index of 1. The photonic
crystal is in the xy plane, and the direction of propagation
is y. We evaluate the losses for the e1 mode, which has
even symmetry relative to the xy plane ( sxy 5 11) and
odd symmetry relative to the yz plane ( syz 5 21). All
simulations are performed by three-dimensional (3D)
FDTD with a discretization of 26 points per lattice param-
eter a. In order to get stable simulations with Bloch
boundary conditions (BBCs), the time step dt was re-
duced to dx/4 (in units of c0 5 1), where dx is the spatial
discretization and c0 is the speed of light in vacuum. All
results are given in normalized frequency a/l and nor-
malized wave vector ak, where l is the wavelength and k
the wave vector of light in vacuum.

To obtain the modal profiles of the photonic crystal
waveguide, we simulate one unit cell of the waveguide,
with BBC in the direction of propagation ( y axis).17 The
BBC forces the field on the y 5 a boundary to be exp(if )
times the field on the y 5 0 boundary, where f is a fixed
phase. Through discrete Fourier transform applied on
the time series collected by a field probe, the spectral
resonances are found and filtered out. In this way,
modes and leaky modes of the photonic crystal waveguide
are obtained. These simulations will be referenced here-
after as ‘‘mode solving’’ in this article. We save the modal
field profile along an xz plane. For all that follows, the
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specific position of the xz plane is not important as long
as it is consistent. In order to obtain the forward-
propagating mode, the BBC is set to a phase 2ka, since
the dispersion diagram has negative slope (the group ve-
locity points in the direction opposite to k). Alternatively,
the field could also be solved with a BBC of ka, followed
by a field transformation that inverts propagation direc-
tion with respect to y18:

~Ex , Ey , Ez! → ~Ex , 2Ey , Ez!* ,

~Bx , By , Bz! → ~2Bx , By , 2Bz!* . (1)

We then simulate field propagation along ten photonic
crystal periods. Figure 1 shows the simulation domain.
We use dipole sources to launch a pulse into the photonic
crystal waveguide and save the field profile every second
lattice period at the same position relative to the unit cell
as in the mode solve. We perform a discrete Fourier
transform on the field cross section and extract the fre-
quencies corresponding to the photonic crystal waveguide
modes of interest.

We then use an inner product to filter out the portion of
the field that is in the e1 mode and evaluate the wave-
guide losses. In Section 2 the inner product is intro-
duced, and in Section 3 we show the simulation results.

2. INNER PRODUCT
For waveguides with continuous symmetry, orthogonality
conditions between bound modes and between bound
modes and radiative modes are well established.18 In
particular, for a nonabsorbing waveguide with translation
symmetry in the y direction and two modes (bound or ra-
diative) c j 5 (E, H) and (c̄k 5 Ē, H̄) with the same im-
plicit time dependence exp(2ivt),

E 5 ej~x, z !exp~ib jy !, H 5 hj~x, z !exp~ib jy !,
(2)

Ē 5 ek~x, z !exp~ibky !, H̄ 5 hk~x, z !exp~ibky !,
(3)

Fig. 1. Cross section of the simulation domain. A dipole source
launches a field of symmetry sxy 5 21, syz 5 11. Every second
lattice period a field probe saves the field.
where v is the angular frequency and b j/k are the propa-
gation constants, the following holds:

~b j 2 bk!E
A
$ej 3 hk* 1 ek* 3 hj% • ŷdA 5 0, (4)

where ŷ is the normal vector in the y direction and A is an
xz plane. Photonic crystal waveguide modes can be writ-
ten as

E 5 ej~x, y, z !exp~ib jy !,

H 5 hj~x, y, z !exp~ib jy !, (5)

Ē 5 ek~x, y, z !exp~ibky !,

H̄ 5 hk~x, y, z !exp~ibky !, (6)

where b j and bk are in the first Brillouin zone and ej/k
and hj/k are periodic in the y direction with the lattice
constant a as a period. We use the same functional as an
inner product for photonic crystal waveguides:

^ cuc̄&y0
5

1

4
E

A$ y 5 y0%
$ej 3 hk* 1 ek* 3 hj% • ŷdA. (7)

This inner product is not a scalar product, because
backward-propagating modes have a negative square
product and standing waves are null vectors. However,
for a steady-state field u c&, ^ cu c&y0

is the time-averaged
power flux propagating in the y direction and is thus in-
dependent of the reference plane A$ y 5 y0% (we assumed
nonabsorbing materials and A as an infinite plane). We
apply Fourier filtering before calculating the inner prod-
ucts. In particular, the transfer matrix Ty0→y01a 5 Ta

that maps the field from one cross section A1$ y 5 y0% to a
cross section A2$ y 5 y0 1 a%, which is one lattice param-
eter farther along the y direction, conserves ^ cu c&. From
the conservation of the square product we conclude con-
servation of the inner product:

^ c1u c2&y0
5 ^ c1u c2&y01a , (8)

^ c1u c2& 5 ^ c1uTa
1Tau c2&. (9)

The EM field can be decomposed into eigenmodes of the
operator Ta (Bloch modes) because of the periodicity of
the photonic crystal waveguide (Bloch theorem). For two
modes u c1& and u c2& satisfying Tau c1& 5 exp(ik1a)u c1&
and Tau c2& 5 exp(ik2a)u c2&, we have

^ c1uTa
1Tau c2& 5 exp@i~k2 2 k1!a#^ c1u c2&. (10)

From Eqs. (9) and (10) we conclude that ^ c1u c2& 5 0 if
k1 Þ k2. When two bands cross, we can conclude from
the continuity of the scalar product that ^ c1u c2& 5 0 also
holds at the crossover point. However, the method used
for mode solving in this paper does not discriminate be-
tween degenerate modes (same wave number and same
frequency). The solution obtained is then a superposi-
tion of the two degenerate modes. One way to obtain the
mode profiles would be to run the mode solve twice with
different initial fields and then find the superpositions of
those two solutions that correspond to the modes. Let us
call the two crossing bands band 1 and band 2. Because
the mode profiles are a continuous function of frequency
(a result obtained from solid-state band theory) the scalar
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product between the mode of band 1 at the crossover point
and a mode of band 2 at a different frequency (where
there is no degeneracy and the mode can be readily ob-
tained) tends to zero when that frequency offset tends to
zero. We can thus obtain a mode of band 2 at a frequency
slightly offset from the crossover point, but offset enough
that the modes of the two bands can be distinguished, and
then use as a discrimination criterion that the mode of
band 1 at the crossover point should be orthogonal to the
mode of band 2. This method is more accurate if the
mode of band 2 is very close to the crossover point. How
close it can be taken to that point depends primarily on
the spectral resolution given by the number of time steps
used in the mode solve. Another solution could consist in
using directly the field profile obtained from the mode
solve (which is a superposition of the two degenerate
modes) and then fitting the data obtained with this field
profile with a sum of two exponentials instead of fitting it
with a single exponential. This latter method would be
particularly appropriate if the losses of the two modes
were very distinct, in which case the separation into two
exponentials should then be straightforward.

3. RESULTS
The simulation domain is 7A(3)a 3 3.84a in the xz plane
and 10a in the y direction. The properties of the inner
product (orthogonality and flux conservation) have been
derived for an integral over an infinite plane. When in-
ner products are taken with bound modes, the integration
domain can be reduced to a finite cross section because of
the exponential decay of the bound modes in the evanes-
cent field region. However, this does not hold for radia-
tive modes. In particular, ^ cu c& is not conserved along
the y direction, because radiative modes are absorbed by
the perfectly-matched-layer absorbing boundary condi-
tion.

The same simulation could have been performed with a
BBC with a phase of 0 applied to the xy and yz bound-
aries. This would create a supercell in which bound
modes of the several layers of PPC waveguide are coupled
to each other. If the simulation domain is big enough in
the x and z dimensions, however, these couplings are neg-
ligible. In such a case we would expect ^ cu c& to be con-
served.

We analyze losses for the e1 mode between the light
line and the point where the dispersion is folded back a
second time into the Brillouin zone (at the G point). At
that point a mini stop band opens.8 Figure 2 shows uBzu
for the e1 mode at a/l 5 0.3383 (ka 5 0.07p). The field
amplitude has two maxima, but they have the same
phase (i.e., Bz is even and syz 5 21). Figure 3 shows
20 log10(u^ cka50.07pu c l&u), where u cka50.07p& is the photo-
nic crystal waveguide mode and u c l& is the field profile at
the lth probe and at a/l 5 0.3383. The field intensity
shows the exponential decrease that is to be expected.
On the same plot 10 log10(u^ c lu c l&u) is also shown. It can
be seen that using the latter would result in an overevalu-
ation of the losses because the field decay is partially due
to insertion losses and the field has not yet converged to
the photonic crystal waveguide mode. If the lattice pa-
rameter a is chosen to be 0.52m, the intrinsic losses are
110 dB/mm at that frequency.

As an additional test we plotted the phase of
^ cka50.07pu c l& (Fig. 4). It can be seen that it has the ex-
pected linear behavior and that it corresponds to a wave
vector of 0.0698p (which is very close to 0.07p fixed in the
mode solve).
Fig. 2. Mode profile for ka 5 0.07p (lower band of e1). The colormap shows uBzu. The thick black line shows the high-index region
(n 5 3.43). The two maxima have the same phase (i.e., Bz is even). Units are in micrometers for a pitch of a 5 0.52m.
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Fig. 4. Plot of the phase of ^ c lu cka50.07p&. The expected linear behavior is seen.

Fig. 3. 20 log10(u^ c lu cka50.07p&u) is plotted with circles, where u c l& is the field profile at the lth probe and u cka50.07p& is the mode profile
at ka 5 0.07p. 10 log10(u^ c lu c l&u) is plotted with crosses. Probes are spaced by two lattice constants.
Figure 5 shows the computed waveguide losses and the
dispersion diagram for the lower band of the e1 mode.
Losses first increase away from the light line but then de-
crease again in the vicinity of the mini stop band.

This numerical method used should be very accurate in
the region of high group velocity (from a/l 5 0.28 to a/l
5 0.33). However, this method cannot be used to calcu-
late the quality factor of zero group-velocity modes, be-
cause these modes are null vectors for the inner product
used. For modes of increasingly small group velocity, nu-
merical inaccuracies in the mode profile that have a finite
flux become dominant and lead to inaccurate results. To
show this, we compared for each data point the wave vec-
tor extracted from the inner products with the wave vec-
tor initially fixed in the mode-solve procedure (Fig. 6). It
is seen that those values correspond for modes away from
the mini stop band. However, the first eight data points
from ka 5 0 to ka 5 0.04p show a discrepancy. Al-
though the field profiles of the computed modes look good
(comparable with those of Fig. 2), the numerical error
that is associated with forward-propagating power domi-
nates the inner products. Consequently, we did not plot
those eight data points on Fig. 5.

The decrease of radiative losses for the lower band of e1
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Fig. 5. (a) Dispersion diagram of the lower band of e1, (b) losses of the lower band of e1. The straight line in (a) represents the light
line. Losses (in dB/mm) correspond to a lattice parameter of a 5 0.52m.
when the mini stop band is approached has been experi-
mentally observed8 and theoretically investigated by
other methods.13 Reference 13 is based on a two-
dimensional effective-index analysis. In that model, an
upturn of losses in the immediate vicinity of the mini stop
band is also observed but in a frequency range too narrow
to be experimentally resolved, whereas in our analysis
the upturn occurs between a/l 5 0.33 and a/l 5 0.34.
It is not completely clear whether this is an artifact of the
low group velocity and the limitations of the inner prod-
uct or is due to 3D behavior.

4. CONCLUSION
We have shown that an inner product usually applied to
waveguides of continuous symmetry also verifies the or-

Fig. 6. ka as set in the mode solve versus ka extracted from the
phases of ^ c lu cka&. Away from the mini stop band, in the high-
group-velocity regime, there is a good correspondence. How-
ever, near the mini stop band the behavior of phase ^ c lu cka& dif-
fers from what would be expected from the dispersion diagram.
thogonality condition between photonic crystal waveguide
modes. The inner product was used to analyze data from
an FDTD simulation and to evaluate losses of a W1 wave-
guide. General trends exposed in the previous literature
are verified. However, the accuracy of the method is lim-
ited for modes of very low group velocity.

Corresponding author Jeremy Witzens can be reached
by e-mail at witzens@caltech.edu.
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