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Using a combination of temporal coupled-mode theory and nonlinear finite-difference time-domain (FDTD)
simulations, we study the nonlinear dynamics of all-resonant four-wave mixing processes and demonstrate
the possibility of achieving high-efficiency limit cycles and steady states that lead to ≈100% depletion of the
incident light at low input (critical) powers. Our analysis extends previous predictions to capture important
effects associated with losses, self- and cross-phase modulation, and imperfect frequency matching (detuning) of
the cavity frequencies. We find that maximum steady-state conversion is hypersensitive to frequency mismatch,
resulting in high-efficiency limit cycles that arise from the presence of a homoclinic bifurcation in the solution
phase space, but that a judicious choice of incident frequencies and input powers, in conjuction with self-phase and
cross-phase modulation, can restore high-efficiency steady-state conversion even for large frequency mismatch.
Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low
∼50 mW input powers in silicon micrometer-scale PhC nanobeam cavities.
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I. INTRODUCTION

Optical nonlinearities play an important role in numerous
photonic applications, including frequency conversion and
modulation [1–7], light amplification and lasing [1,8–10],
beam focusing [1,11], phase conjugation [1,12], signal pro-
cessing [13,14], and optical isolation [15,16]. Recent de-
velopments in nanofabrication are enabling fabrication of
nanophotonic structures, e.g., waveguides and cavities that
confine light over long times and small volumes [17–21], min-
imizing the power requirements of nonlinear devices [22,23]
and paving the way for novel on-chip applications based
on all-optical nonlinear effects [18,24–33]. In addition to
greatly enhancing light-matter interactions, the use of cavities
can also lead to qualitatively rich dynamical phenomena,
including multistability and limit cycles [34–40]. In this paper,
we explore realistic microcavity designs that enable highly
efficient degenerate four-wave mixing (DFWM) beyond the
undepleted pump regime. In particular, we extend the results
of our previous work [41], which focused on the theoretical
description of DFWM in triply resonant systems via the tem-
poral coupled-mode theory (TCMT) framework, to account
for various realistic and important effects, including linear
losses, self-phase and cross-phase modulation, and frequency
mismatch. Specifically, we consider the nonlinear process
depicted in Fig. 1, in which incident light at two nearby
frequencies, a pump ω0 and signal ωm = ω0 − �ω photon, is
up-converted into output light at another nearby frequency, an
idler ωp = ω0 + �ω photon, inside a triply resonant photonic
crystal nanobeam cavity (depicted schematically in Fig. 2).
We demonstrate that 100% conversion efficiency (complete
depletion of the pump power) can be achieved at a critical
power and that detrimental effects associated with self-phase
and cross-phase modulation can be overcome by appropriate
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tuning of the cavity resonances. Surprisingly, we find that
critical solutions associated with maximal frequency conver-
sion are ultrasensitive to frequency mismatch (deviations from
perfect frequency matching resulting from fabrication imper-
fections), but that there exist other robust, dynamical states
(e.g., “depleted” states and limit cycles) that, when properly
excited, can result in high conversion efficiencies at reasonable
pump powers. We demonstrate realistic designs based on PhC
nanobeam cavities that yield 100% conversion efficiencies at
∼50 mW pump powers and over broad bandwidths (modal
lifetimes Q ∼ 1000 s). Although our cavity designs and
power requirements are obtained using the TCMT framework,
we validate these predictions by checking them against
rigorous, nonlinear finite-difference time-domain (FDTD)
simulations.

Although chip-scale nonlinear frequency conversion has
been a topic of interest for decades [33], most theoretical
and experimental works have been primarily focused on
large-etalon and singly resonant systems exhibiting either
large footprints and small bandwidths [25,26,42,43], or
low conversion efficiencies (the undepleted pump regime)
[22,44–46]. These include studies of χ (2) processes such as
second harmonic generation [26,47–49], sum and difference
frequency generation [50], and optical parametric amplifi-
cation [27,28,51], as well as χ (3) processes such as third
harmonic generation [47,52], four-wave mixing [53–55], and
optical parametric oscillators [22,56–58]. Studies that go
beyond the undepleted regime and/or employ resonant cavities
reveal complex nonlinear dynamics in addition to high-
efficiency conversion [23,37–39,41,59,60], but have primarily
focused on ring-resonator geometries due to their simplicity
and high degree of tunability [60]. Significant efforts are
underway to explore similar functionality in wavelength-scale
photonic components (e.g., photonic crystal cavities) [49,50],
although high-efficiency conversion has yet to be experi-
mentally demonstrated. Photonic crystal nanobeam cavities
not only offer a high degree of tunability, but also mitigate
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FIG. 1. (Color online) Schematic diagram of a degenerate four-
wave mixing process in which a pump photon at frequency ω0 and
a signal photon at frequency ωm = ω0 − �ω are converted into an
idler photon at ωp = ω0 + �ω and an additional signal photon at
ωm, inside of a triply resonant χ (3) nonlinear cavity. The cavity
supports three resonant modes with frequencies ωck , lifetimes Qk , and
modal amplitudes ak , which are coupled to a waveguide supporting
propagating modes at the incident or output frequencies ωk , with
coupling lifetimes Qsk . The incident and output powers associated
with the kth mode are given by |sk+|2 and |sk−|2.

the well-known volume and bandwidth tradeoffs associated
with ring resonators [61], yielding minimal device footprint
and on-chip integrability [62,63], in addition to high-quality
factors [21,64–67].

In what follows, we investigate the conditions and design
criteria needed to achieve high-efficiency DFWM in realistic
nanobeam cavities. Our paper is divided into two primary
sections. In Sec. II, we revisit the TCMT framework introduced
in Ref. [41], and extend it to include additional effects arising
from cavity losses (Sec. II A), self-phase and cross-phase

FIG. 2. (Color online) Schematic of 3D triply resonant cavity
design involving a PhC nanobeam of refractive index n = 3.4, width
w = a, and height h = 0.51a, and linearly tapered air holes, as
described in the text. The central cavity length L ≈ 0.4a and number
of taper segments are chosen so as to fine-tune the relative frequency
spacing and lifetimes of the modes. Also shown are the Ey electric-
field components of three TE-like modes with fundamental TE00
transverse profiles, and with frequencies ωc0 = 0.2848( 2πc

a
), ωcm =

0.2801( 2πc

a
), and ωcp = 0.2895( 2πc

a
). Radiation lifetimes are found

to be Qrad
0 = 106,Qrad

m = 3 × 104, and Qrad
p = 2 × 104.

modulation (Sec. II B), and frequency mismatch (Sec. II C).
In Sec. III, we consider specific designs, starting with a simple
two-dimensional (2D) design (Sec. III A) and concluding with
a more realistic three-dimensional (3D) design suitable for
experimental realization (Sec. III B). The predictions of our
TCMT are checked and validated in the 2D case against exact
nonlinear FDTD simulations.

II. ANALYSIS VIA TEMPORAL
COUPLED-MODE THEORY

To obtain accurate predictions for realistic designs, we
extend the TCMT predictions found in Ref. [41] to include
important effects associated with the presence of losses, self-
phase and cross-phase modulation, and imperfect frequency
matching. We consider the DFWM process depicted in Fig. 1,
in which incident light from some input or output channel
(e.g., a waveguide) at frequencies ω0 and ωm is converted to
output light at a different frequency ωp = 2ω0 − ωm inside a
triply resonant χ (3) cavity. The fundamental assumption of
TCMT (accurate for weak nonlinearities) is that any such
system, regardless of geometry, can be accurately described
by a few sets of geometry-specific parameters [41]. These
include the frequencies ωck and corresponding lifetimes τk (or
quality factors Qk = ωckτk/2) of the cavity modes, as well
as nonlinear coupling coefficients αkk′ and βk , determined
by overlap integrals between the cavity modes (and often
derived from perturbation theory [23]). Note that, in general,
the total decay rate (1/τk) of the modes consist of decay into
the input or output channel (1/τsk), as well as external (e.g.,
absorption or radiation) losses with decay rate 1/τek , so that
1/τk = 1/τsk + 1/τek . Letting ak denote the time-dependent
complex amplitude of the kth cavity mode (normalized so that
|ak|2 is the electromagnetic energy stored in this mode), and
letting sk± denote the time-dependent amplitude of the incident
(+) and outgoing (−) light (normalized so that |sk±|2 is the
power at the incident or output frequency ωk), it follows that
the field amplitudes are determined by the following set of
coupled ordinary differential equations [23]:

da0

dt
= iωc0(1 − α00|a0|2 − α0m|am|2 − α0p|ap|2)a0

− a0

τ0
− iωc0β0a

∗
0amap +

√
2

τs0
s0+, (1)

dam

dt
= iωcm(1 − αm0|a0|2 − αmm|am|2 − αmp|ap|2)am

− am

τm

− iωcmβma2
0a

∗
p +

√
2

τsm

sm+, (2)

dap

dt
= iωcp(1 − αp0|a0|2 − αpm|am|2 − αpp|ap|2)ap

− ap

τp

− iωcpβpa2
0a

∗
m, (3)

s0− =
√

2

τs0
a0 − s0+, sm− =

√
2

τsm

am − sm+,

sp− =
√

2

τsp

ap, (4)
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where the nonlinear coupling coefficients [41]

αkk = 1

8

∫
d3xε0χ

(3)[2|Ek · E∗
k |2 + |Ek · Ek|2]( ∫

d3xε|Ek|2
)2 , (5)

αkk′ = 1

4

∫
d3xε0χ

(3)[|Ek · E∗
k′ |2 + |Ek · Ek′ |2 + |Ek|2|Ek′ |2]( ∫

d3xε|Ek|2
)( ∫

d3xε|Ek′ |2) ,

(6)

αkk′ = αk′k, (7)

β0 = 1

4

∫
d3xε0χ

(3)[(E∗
0 · E∗

0)(Em · Ep)+2(E∗
0 · Em)(E∗

0 · Ep)]( ∫
d3xε|E0|2

)( ∫
d3xε|Em|2)1/2( ∫

d3xε|Ep|2)1/2 ,

(8)

βm = βp = β∗
0 /2, (9)

express the strength of the nonlinearity for a given mode,
with the α terms describing self-phase modulation (SPM) and
cross-phase modulation (XPM) effects and the β terms char-
acterizing the energy transfer between the modes. (Technically
speaking, this qualitative distinction between α and β is only
true in the limit of small losses [23]).

A. Losses

Equations (1) and (4) can be solved to study the steady-
state conversion efficiency of the system [η = |sp−|2/(|s0+|2 +
|sm+|2)] in response to incident light at the resonant cavity
frequencies (ωk = ωck), as was done in Ref. [41] in the ideal
case of perfect frequency matching (ωcp = 2ωc0 − ωcm), no
losses (τk �= τsk), and no SPM or CPM (α = 0). In this ideal
case, one can obtain analytical expressions for the maximum
efficiency ηmax and critical powers P crit

0 = |scrit
0+ |2 and P crit

m =
|scrit

m+|2, at which 100% depletion of the total input power is
attained [41]. Performing a similar calculation, but this time
including the possibility of losses, we find

P crit
0 = 4

τs0|β0|√τmτpωmωp

, (10)

ηmax = τp

τsp

(
2 − τs0

τ0

)
ωp

2ω0
. (11)

With respect to the lossless case, the presence of losses merely
decreases the maximum achievable efficiency by a factor of
τp/τsp(2 − τs0/τ0) while increasing the critical power P crit

0 by
a factor of

√
τsmτsp/τmτp. As in the case of no losses, 100%

depletion is only possible in the limit as Pm → 0, from which it
follows that the maximum efficiency is independent of τm. As
noted in Ref. [41], the existence of a limiting efficiency (11) can
also be predicted from the Manley-Rowe relations governing
energy transfer in nonlinear systems [68] as can the limiting
condition Pm → 0. While theoretically this suggests that one
should always employ as small a Pm as possible, as we show
below, practical considerations make it desirable to work at a
small but finite (nonnegligible) Pm.

B. Self-phase and cross-phase modulation

Unlike losses, the presence of SPM and XPM dramatically
alters the frequency-conversion process. Specifically, a finite

α leads to a power-dependent shift in the effective cavity
frequencies ωNL

ck = ωck(1 − ∑
j αkj |Aj |2) that spoils both the

frequency-matching condition as well as the coupling of the
incident light to the corresponding cavity modes. One approach
to overcome this difficulty is to choose or design the linear
cavity frequencies to have frequency ωck slightly detuned
from the incident frequencies ωk , such that at the critical
powers the effective cavity frequencies align with the incident
frequencies and satisfy the frequency-matching condition [41].
Specifically, assuming incident light at ω0 and ωm, it follows
by inspection of Eqs. (1) to (4) that preshifting the linear cavity
resonances away from the incident frequencies according to
the transformation

ωcrit
c0 = ω0

1 − α00

∣∣acrit
0

∣∣2 − α0m

∣∣acrit
m

∣∣2 − α0p

∣∣acrit
p

∣∣2 , (12)

ωcrit
cm = ωm

1 − αm0

∣∣acrit
0

∣∣2 − αmm

∣∣acrit
m

∣∣2 − αmp

∣∣acrit
p

∣∣2 , (13)

ωcrit
cp = 2ω0 − ωm

1 − αp0

∣∣acrit
0

∣∣2 − αpm

∣∣acrit
m

∣∣2 − αpp

∣∣acrit
p

∣∣2 , (14)

yields the same steady-state critical solution obtained for
α = 0, where acrit

k denotes the critical, steady-state cavity
fields.

An alternative approach to excite the critical solution
above in the presence of SPM and XPM is to detune the
incident frequencies away from ωc0 and ωcm, keeping the two
cavity frequencies unchanged, while preshifting ωcp to enforce
frequency matching. Specifically, by inspection of Eqs. (12)
to (14), it follows that choosing input-light frequencies

ωcrit
0 = ωc0

(
1 − α00

∣∣acrit
0

∣∣2 − α0m

∣∣acrit
m

∣∣2 − α0p

∣∣acrit
p

∣∣2)
, (15)

ωcrit
m =ωcm

(
1 − αm0

∣∣acrit
0

∣∣2 − αmm

∣∣acrit
m

∣∣2 −αmp

∣∣acrit
p

∣∣2)
, (16)

and tuning ωcp such that

ωcrit
cp = 2ωc0

(
1 − ∑

α0k

∣∣acrit
k

∣∣2) − ωcm

(
1 − ∑

αmk

∣∣acrit
k

∣∣2)
1 − ∑

αpk

∣∣acrit
k

∣∣2 ,

(17)

yields the same steady-state critical solution above. This
approach is advantageous in that the requirement that all three
cavity frequencies be simultaneously and independently tuned
(postfabrication) is removed in favor of tuning a single cavity
mode. Given a scheme to tune the frequencies of the cavity
modes that achieves perfect frequency matching at the critical
power, what remains is to analyze the stability and excitability
of the new critical solution, which can be performed using a
straightforward linear stability analysis of the coupled-mode
equations [38]. Before addressing these questions, however, it
is important to address a more serious concern.

C. Frequency mismatch

Regardless of the tuning mechanism, in practice one can
never fully satisfy perfect frequency matching (even when
SPM and XPM can be neglected) due to fabrication imper-
fections. In general, one would expect the finite bandwidth to
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mean that there is some tolerance ∼1/Qp on any frequency
mismatch �ω = 2ωc0 − ωcm − ωcp � ωcp/Qcp [60]. How-
ever, here we find that instabilities and strong modifications of
the cavity lineshapes arising from the particular nature of this
nonlinear process lead to extreme, subbandwidth sensitivity to
frequency deviations that must be carefully examined if one is
to achieve high-efficiency operation.

To illustrate the effects of frequency mismatch, we first
consider an ideal, lossless system with zero SPM and XPM
(α = 0) and with incident light at frequencies ω0 = ωc0 and
ωm = ωcm, and powers P crit

0 and Pm, respectively. With the
exception of α, the coupling coefficients and cavity parameters
correspond to those of the 2D design described in Sec. III A.
Figure 3 (top) shows the steady-state conversion efficiency
η (solid lines) as a function of the frequency mismatch
�cp = ωcp − ωcrit

cp away from perfect frequency matching, for
multiple values of Pm = {0.001,0.01,0.1}P crit

0 , with dark gray
(blue) and light gray (red) solid lines denoting stable and
unstable steady-state fixed points. As shown, solutions come
in pairs of stable and unstable fixed points, with the stable
solution approaching the maximum efficiency ηmax critical
solution as Pm → 0. Moreover, one observes that as �cp

increases for finite Pm, the stable and unstable fixed points
approach and annihilate one other, with limit cycles appearing
in their stead (an example of what is known as a “saddle-node
homoclinic bifurcation” [69]). We stress that these bifurcations
differ from the conventional Hopf bifurcations observed in
optical parametric oscillators [70,71]. In a Hopf bifurcation,
limit cycles are born when a fixed point becomes unstable,
and are therefore associated with the presence of one or more
unstable fixed points. In contrast, the limit cycles obtained
here are not associated with any particular fixed points, but
arise because two fixed points, one stable and the other
unstable, annihilate each other at the onset of the bifurcation, a
so-called saddle-node bifurcation. The limit cycle is therefore
the remnant of the homoclinic orbit that connected the two
fixed points, a so-called “saddle node-homoclinic bifurcation.”
The frequency mismatch at which this bifurcation occurs is
proportional to Pm, so that, as Pm → 0, the regime over which
there exist high-efficiency steady states reduces to a single
fixed point occurring at �cp = 0. Beyond this bifurcation
point, the system enters a limit-cycle regime (shaded regions)
characterized by periodic modulations of the output signal
in time [37,38,72]. Interestingly, we find that the average
efficiency of the limit cycles (dashed lines)

η̄ = lim
T →∞

1

T

∫ T

0
dt η(t), (18)

remains large ∼ ηmax even when �cp is several fractional
bandwidths. The inset of Fig. 3 (top) shows the efficiency
of this system as a function of time (in units of the lifetime
τ0) for large mismatch �cp = 3ωcrit

cp /2Qp. As expected, the
modulation amplitude and period of the limit cycles depend
on the input power and mismatch, and in particular we find
that the amplitude goes to zero and the period diverges
∼1/�cp as �cp → 0. This behavior is observed across a
wide range of Pm, with larger Pm leading to lower η̄ and
larger amplitudes. For small-enough mismatch, the modulation
frequency enters the THz regime, in which case standard

stable

unstable

stable

unstable

FIG. 3. (Color online) (Top) Steady-state conversion efficiency η

(normalized by the maximum achievable efficiency ηmax) as a function
of frequency mismatch �cp = ωcp − ωcrit

cp (in units of ωcrit
cp /2Qp),

for the cavity system depicted in Fig. 5, but in the absence of
SPM and XPM (α = 0). Incident frequencies are chosen to be
ω0 = ωcrit

0 and ωm = ωcrit
m , with corresponding powers P0 = P crit

0 and
Pm, where we consider multiple Pm = {0.1,0.01,0.001}P crit

0 . Note
that since α = 0, critical frequencies are independent of incident
powers, so that ωcrit

0 = ωc0, ωcrit
m = ωcm, and ωcrit

cp = 2ωc0 − ωcm.
Dark gray (blue) and light gray (red) solid lines denote stable and
unstable fixed points, whereas shaded areas indicate regimes lacking
fixed point solutions and exhibiting limit-cycle behavior, shown only
for Pm = {0.01,0.001}P crit

0 , with smaller amplitudes corresponding
to smaller Pm. Dashed lines denote the average efficiency of the
limit cycles η̄, whereas the top and bottom of the shaded regions
denote the maximum and minimum efficiency per period. The inset
shows the efficiency as a function of time for a typical limit cycle,
obtained at �cp ≈ 3ωcrit

cp /2Qp . (Bottom) η and η̄ for the same system
above, but in the presence of SPM and XPM (α �= 0), and only
for Pm = 0.01P crit

0 . Note that additional stable and unstable fixed
points arise due to the nonzero α, and that limit-cycle behaviors
arise only for �cp > 0. Inset shows the temporal shape of the
incident power needed to excite the desired limit cycles, corre-
sponding to a Gaussian pulse superimposed over continuous wave
inputs.
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rectifications procedures [73] can be applied to extract the
useful THz oscillations [4,5,74–77].

Frequency mismatch leads to similar effects for finite α,
including homoclinic bifurcations and corresponding high-
efficiency limit cycles that persist even for exceedingly large
frequency mismatch. One important difference, however, is
that the redshift associated with SPM and XPM creates a
strongly asymmetrical lineshape that prevents high-efficiency
operation for �cp < 0. Figure 3 (bottom) shows the stable
and unstable fixed points (solid lines) and limit cycles (dashed
regions) as a function of �cp for the same system of Fig. 3 (top)
but with finite α and for two values of Pm = {0.001,0.01}P crit

0 .
As before, the coupling coefficients and cavity parameters
correspond to those of the 2D design described in Sec. III A.
Here, in contrast to the α = 0 case, the critical incident
frequencies ωcrit

0 and ωcrit
m are chosen according to Eqs. (15)

and (16) to counter the effects of SPM and XPM, and
are therefore generally different from ωc0 and ωcm. Aside
from the asymmetrical lineshape, one important difference
from the α = 0 case is the presence of additional stable and
unstable low-efficiency solutions. Multistability complicates
matters since, depending on the initial conditions, the system
can fall into different stable solutions and in particular,
simply turning on the source at the critical input power
may result in an undesirable low-efficiency solution. One
well-known technique that allows such a system to lock into the
desired high-efficiency solutions is to superimpose a gradual
exponential turn-on of the pump with a Gaussian pulse of larger
amplitude [37]. We found that a single Gaussian pulse with a
peak power of 4P crit

0 and a temporal width ∼τm, depicted
in the right inset of Fig. 3 (bottom), is sufficient to excite
high-efficiency limit cycles in the regime �cp > 0.

Despite their high efficiencies (even for large �cp � 1),
the limit-cycle solutions above leave something to be desired.
Depending on the application, it may be desirable to operate
at high-efficiency fixed points. One way to achieve this for
nonzero frequency mismatch is to abandon the critical solution
and instead choose incidence parameters that exploit SPM
and XPM to enforce perfect frequency matching and 100%
depletion of the pump, i.e.,

ωNL
cp + ωNL

cm = 2ωNL
c0 , (19)

s0− = 0. (20)

Specifically, enforcing Eqs. (19) and (20) by solving Eqs. (1)
to (4) for ω

dep
0 ,ω

dep
m ,P

dep
0 , and P

dep
m , we obtain a depleted

steady-state solution a
dep
k that, in contrast to the critical solution

acrit
k , yields a steady-state efficiency that corresponds to 100%

depletion of the pump regardless of frequency mismatch.
Note that we are not explicitly maximizing the conversion
efficiency, but rather enforcing complete conversion of pump
energy in the presence of frequency mismatch, at the expense
of a nonnegligible input P

dep
m . Figure 4 shows the depleted

steady-state efficiency ηdep (solid line) and corresponding
incident powers (solid circles and dashed line) as a function of
�cp, for the same system of Fig. 3 (bottom). We find that for
most parameters of interest, depleted efficiencies and powers
are uniquely determined by Eqs. (19) and (20). As expected,
the optimal efficiency occurs at �cp = 0 and corresponds to
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FIG. 4. (Color online) Steady-state conversion efficiency (nor-
malized by the maximum achievable efficiency ηmax) and required
incident powers P

p

0 and P m
m (normalized by the critical power P crit

0 )
corresponding to depleted steady states of the system of Fig. 5,
as a function of frequency mismatch �cp = ωcp − ωcrit

cp (in units of
ωcrit

cp /2Qp). As described in Sec. III A 2, depleted states yield 100%
depletion of P0, and are excited by appropriate combinations of
incident frequencies ωk = ω

dep
k and powers Pk = P

dep
k . Dark gray

(blue) and light gray (red) lines denote stable and unstable solutions,
with solid lines, dashed lines, and circles, denoting η, P dep

m , and P
dep
0 ,

respectively.

the critical solution, so that P
dep
0 = P crit

0 , P
dep
m = P crit

m = 0,
and ηdep = ηmax. For finite �cp �= 0, the optimal efficiencies
are lower due to the finite P

dep
m , but there exists a broad range

of �cp over which one obtains relatively high efficiencies
∼ηmax. Power requirements P

dep
0 and P

dep
m follow different

trends depending on the sign of �cp. Away from zero detuning,
P

dep
m can only increase, whereas P

dep
0 decreases for �cp < 0

and increases for �cp > 0. In the latter case, the total input
power exceeds P crit

0 leading to the observed instability of the
fixed-point solutions.

Finally, we point out that limit cycles and depleted steady
states reside in roughly complementary regimes. Although no
stable high-efficiency fixed points can be found in the �cp > 0
regime, it is nevertheless possible to excite high-efficiency
limit cycles. Conversely, although no such limit cycles exist
for �cp < 0, it is possible in that case to excite high-efficiency
depleted steady states.

III. FDTD SIMULATIONS AND NANOBEAM DESIGNS

In this section, we consider concrete and realistic cavity
designs in two and three dimensions, and validate the pre-
dictions of our TCMT by performing exact nonlinear FDTD
simulations in two dimensions. We show that by choosing
slightly different designs, one can explore high-efficiency
conversion in either the limit-cycle or depleted steady-state
regimes. Our designs are based on a particular class of
PhC nanobeam structures, depicted schematically in Figs. 5
and 2, where a cavity is formed by the introduction of a
defect in a lattice of air holes in dielectric, and coupled to
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FIG. 5. (Color online) Schematic of 2D triply resonant cavity
design involving a PhC nanobeam of refractive index n = 3.4, width
w = 1.2a, and adiabatically varying hole radii (see text). The effective
cavity length d = 6.6a and the radius of the central hole R0 are chosen
so as to fine-tune the relative frequency spacing and lifetimes of the
modes. Also shown are the Ey electric field components of the three
modes relevant to DFWM. The cavity is coupled to a waveguide
formed by the removal of holes to the right of the defect.

an adjacent waveguide formed by the removal of holes on
one side of the defect. We restrict our analysis to dielectric
materials with high nonlinearities at near-infrared and mid-
infrared wavelengths [1], and in particular focus on undoped
silicon, whose refractive index n ≈ 3.4 and Kerr susceptibility
χ (3) ∼ 10−18 m2/V2 [78].

Before delving into the details of any particular design, we
first describe the basic considerations required to achieve the
desired high-efficiency characteristics. To begin with, we seek
modes that approximately satisfy ωcm + ωcp = 2ωc0. The final
cavity design, incorporating SPM and XPM, is then obtained
by additional tuning of the mode frequencies as described by
the predictions of the coupled-mode theory (CMT). Second,
we seek modes that have large nonlinear overlap β, determined
by Eq. (8). (Ideally, one would also optimize the cavity

design to reduce α/β, but such an approach falls beyond
the scope of this work.) Note that the overlap integral β

replaces the standard “quasiphase matching” requirement
in favor of constraints imposed by the symmetries of the
cavity [1]. In our case, the presence of reflection symmetries
means that the modes can be classified as either even or
odd and also as “transverse electric (TE)-like” (E · ẑ ≈ 0) or
“transverse magnetic (TM)-like” (H · ẑ ≈ 0) [79], and hence
only certain combinations of modes will yield nonzero overlap.
It follows from Eq. (8) that any combination of even or
odd modes will yield nonzero overlap so long as Em and
Ep have the same parity, and as long as all three modes
have similar polarizations: modes with different polarization
will cause the term ∼(E∗

0 · Em)(E∗
0 · Ep) in Eq. (8) to vanish.

Third, to minimize radiation losses, we seek modes whose
radiation lifetimes are much greater than their total lifetimes,
as determined by any desired operational bandwidth. In what
follows, we assume operational bandwidths with Q ∼ 103.
Finally, we require that our system supports a single input or
output port for light to couple in or out of the cavity, with
coupling lifetimes Qsk 
 Qrk to have negligible radiation
losses.

A. 2D design

To explore both high-efficiency limit-cycle and steady-state
behaviors, we consider two separate 2D cavity designs, each
resulting in different frequency mismatch but similar lifetimes
and coupling coefficients. (Note that by “2D” we mean
that electromagnetic fields are taken to be uniform in the z

direction.) The two cavities follow the same backbone design
shown in Fig. 5 which supports three TE-polarized modes (H ·
ẑ = 0) with radiative lifetimes Qrad

0 = 6×104,Qrad
m = 6×104,

and Qrad
p = 3×103, and total lifetimes Q0 = 1200,Qm =

1100, and Qp = 700, respectively. The nonlinear coupling
coefficients are calculated from the linear modal profiles
(shown on the inset of Fig. 5) via Eqs. (8) and (7), and are
given by

β = (23.69 + 5.84i)×10−5

(
χ (3)

ε0a2h

)
,

α00 = 4.935×10−4

(
χ (3)

ε0a2h

)
, αmm = 5.096×10−4

(
χ (3)

ε0a2h

)
,

αpp = 4.593×10−4

(
χ (3)

ε0a2h

)
, α0m = 6.540×10−4

(
χ (3)

ε0a2h

)
,

α0p = 5.704×10−4

(
χ (3)

ε0a2h

)
, αmp = 5.616×10−4

(
χ (3)

ε0a2h

)
,

where the additional factor of h allows comparison to the
realistic 3D structure below and accounts for finite nanobeam
thickness (again, assuming uniform fields in the z direction).
Compared to the optimal βmax = 3

4n4wd
(χ (3)

ε0h
), corresponding to

modes with uniform fields inside and zero fields outside the
cavity, we find that β = 5.5×10−3βmax is significantly smaller
due to the fact that these TE modes are largely concentrated

in air. In the 3D design section below, we choose modes with
peaks in the dielectric regions, which leads to much larger
β ≈ 0.4βmax.

To arrive at this 2D design, we explored a wide range
of defect parameters, with the defect formed by modifying
the radii of a finite set of holes in an otherwise periodic
lattice of air holes of period a and radius R = 0.36a in a
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dielectric nanobeam of width w = 1.2a and index of refraction
n = 3.4. The defect was parametrized via an exponential
adiabatic taper of the air-hole radii r , in accordance with the

formula r(x) = R(1 − 3
4e

− 4�x�2

d2 ), where the parameter d is an
“effective cavity length.” Such an adiabatic taper is chosen to
reduce radiation and scattering losses at the interfaces of the
cavity [80]. Removing holes on one side of the defect couples
light to a waveguide with decay rate ∼1/Qs determined by the
number of holes removed [81–83].

1. Limit cycles

In this section, we consider a design supporting high-
efficiency limit cycles. Choosing R0 = 0.149a, we obtain
critical parameters ωcrit

0 = 0.2319( 2πc
a

), ωcrit
m = 0.2121( 2πc

a
),

ωcrit
cp = 0.2530( 2πc

a
), and P crit

0 = 10−3( 2πcε0ah

χ (3) ), correspond-
ing to frequency mismatch �cp ≈ 3ωcrit

cp /2Qp and critical
efficiency ηmax = 0.51. Choosing a small but finite Pm =
0.01P crit

0 , it follows from Fig. 3 (dashed line) that the
system will support limit cycles with average efficiencies
η̄ ≈ 0.65ηmax. To excite these solutions, we employed the
priming technique described in Sec. II C. Figure 6 shows
η̄ as a function of P0, for incident frequencies ωk = ωcrit

k

determined by Eqs. (15) and (16), as computed by our TCMT
(dotted gray line) as well as by fully vectorial nonlinear FDTD
simulations (solid circles). The two show excellent agreement.
For 0.7 < P0/P

crit
0 < 3, we observe limit cycles with relatively

high η̄, in accordance with the TCMT predictions, whereas
outside of this regime, we find that the system invariably falls

FIG. 6. (Color online) Average conversion efficiency η̄ (normal-
ized by the maximum achievable efficiency ηmax) of limit cycles as a
function of power P0 (normalized by P crit

0 ) at the critical frequencies
ωcrit

0 and ωcrit
m and a fixed Pm = 0.01P crit

0 . The modal parameters are
obtained from the 2D cavity of Fig. 5, with chosen R0 = 0.149a

leading to a detuning �cp ≈ 3ωcrit
cp /2Qp corresponding to the dashed

line in Fig. 3 (bottom). Solid circles and dotted gray lines denote
results as computed by FDTD and TCMT. Insets show the spectra of
the output light for a given P0 [light gray (red) circle], and for both
FDTD and TCMT.

into low-efficiency fixed points. The periodic modulation of the
limit cycles means that instead of a single peak, the spectrum
of the output signal consists of equally spaced Fourier peaks
that decrease in magnitude away from ωp. The top and
bottom insets of Fig. 6 show the corresponding frequency
spectra of the TCMT and FDTD output signals around ωp,
for a particular choice of P0 ≈ P crit

0 [light gray (red) circle],
showing agreement both in the relative magnitude and spacing
≈2.5×10−3( 2πc

a
) of the peaks.

2. Depleted steady states

In this section, we consider a design supporting high-
efficiency, depleted steady states. Choosing R0 = 0.143a,
one obtains critical parameters ωcrit

0 = 0.2320( 2πc
a

), ωcrit
m =

0.2118( 2πc
a

), ωcrit
cp = 0.2532( 2πc

a
), and P crit

0 = 10−3( 2πcε0ah

χ (3) ),
corresponding to frequency mismatch �cp ≈ −0.6ωcrit

cp /2Qp

and critical efficiency ηmax = 0.51. Choosing incident fre-
quencies ω

dep
0 = 0.2320( 2πc

a
), ω

dep
m = 0.2119( 2πc

a
), and inci-

dent powers P
dep
0 ≈ 0.7P crit

0 and P
dep
m ≈ 0.04P crit

0 , it follows
from Fig. 4 (dashed line) that the system supports stable,
depleted steady states with efficiencies ≈ 0.95ηmax. Figure 7

FIG. 7. (Color online) Conversion efficiency η (normalized by
the maximum achievable efficiency ηmax) of depleted states as a
function of power P0 (normalized by P crit

0 ), at incident frequencies
ω

dep
0 and ωdep

m , and a fixed power P dep
m ≈ 0.2P crit

0 . The modal
parameters are obtained from the 2D cavity of Fig. 5, with R0 =
0.143a leading to a detuning �cp ≈ −0.6ωcrit

cp /2Qp corresponding
to the dashed line in Fig. 4. Ey component of the steady-state
electric field inside the cavity is shown as an inset (left, bottom).
Solid circles and dotted gray lines denote FDTD and TCMT, while
dark gray (blue) and light gray (red) lines denote stable and unstable
steady states. Inset (left, top) shows the spectral profile (in arbitrary
units) of the system, showing full depletion of the pump [dark gray
(blue)] and correspondingly high conversion of the signal and idler
frequencies [light gray (red)]. For P0 � 0.8P crit

0 , the system becomes
ultrasensitive to the priming parameters, in which case high-efficiency
solutions can only be excited by adiabatic tuning of the pump power
(see text).
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shows the efficiency of the system as a function P0, with
all other incident parameters fixed to the depleted-solution
values above, where dark gray (blue) and light gray (red)
lines denote stable and unstable solutions, respectively. As
before, we employ the priming technique of Sec. II C to
excite the desired high-efficiency solutions and obtain ex-
cellent agreement between the TCMT (dotted gray line) and
FDTD simulations (solid circles). Exciting the high-efficiency
solutions by steady-state input “primed” with a Gaussian pulse
is convenient in FDTD because it leads to relatively short
simulations, but is problematic for P0 > 0.8P crit

0 , where the
system becomes very sensitive to the priming parameters and
it becomes impractical to find the optimal source conditions in
Fig. 7. Alternatively, one could also employ other, more robust
techniques to excite the high-efficiency solution, such as by
adiabatically tuning the pump power [37].

B. 3D design

In addition to paving the way for a promising nanboeam
cavity design, the 2D nonlinear FDTD simulations of the
previous section demonstrate the validity and predictions of the
TCMT and the proposed approaches for overcoming frequency
mismatch. In this section, we consider a full 3D design,
depicted in Fig. 2, as a feasible candidate for experimental
realization. The cavity supports three TE00 modes (Ez = 0 at
z = 0) of frequencies ωc0 = 0.2848( 2πc

a
),ωcm = 0.2801( 2πc

a
)

and ωcp = 0.2895( 2πc
a

), radiative lifetimes Qrad
0 = 106,Qrad

m =
3×104,Qrad

p = 2×104. As before, the total lifetimes can be
adjusted by removing air holes to the right or left of the
defect, which would allow coupling to the resulting in-plane
waveguides. (Alternatively, one might consider an out-of-
plane coupling mechanism in which a fiber carrying incident
light at both ω0 and/or ωm is brought in close proximity to the
cavity [81,84].) In what follows, we do not consider any one
particular coupling channel and focus instead on the isolated
cavity design. Nonlinear coupling coefficients are calculated
from the linear modal profiles (shown on the inset of Fig. 2)
via Eqs. (9) and (7), and are given by

β = 2×10−4

(
χ (3)

ε0a3

)
,

α00 = 8.1×10−4

(
χ (3)

ε0a3

)
, αmm = 4.6×10−4

(
χ (3)

ε0a3

)
,

αpp = 11.5×10−4

(
χ (3)

ε0a3

)
, α0m = 6.2×10−4

(
χ (3)

ε0a3

)
,

α0p = 12.7×10−4

(
χ (3)

ε0a3

)
, αmp = 5.5×10−4

(
χ (3)

ε0a3

)
.

Note that here, and in contrast to the 2D design of Sec. III A,
we chose modes whose amplitudes are concentrated in the
dielectric regions, leading to appreciably larger β ≈ 0.4βmax.

To arrive at the above 3D design, we explored a cavity
parametrization similar to the one described by the authors of
Ref. [85]. Specifically, we employed a suspended nanobeam
of width w = a, thickness h = 0.51a, and refractive index
n = 3.4. The beam is schematically divided into a set of 2N

lattice segments, each having length ai,i ∈ {±1, . . . ,±N} and

corresponding air-hole radii Ri = 0.3ai , where a1 (a−1) is the
length of the lattice segment immediately to the right (left) of
the beam’s center. The cavity defect is induced via a linear
taper of ai over a chosen set of 2N̄ segments, according to the
formula

ai = a

(
fa + (1 − fa)

(N̄ − 1)
(|i| − 1)

)
, |i| � N̄

= a, |i| > N̄.

To arrive at our particular design, we chose fa = 0.85,N =
21,N̄ = 9 and varied the central cavity length L to obtain
the desired TE00 modes. Assuming total modal lifetimes
Q0 = 8500,Qm = 3000, and Qp = 3000 and using these
design parameters, we obtain critical parameters ωcrit

0 =
0.2843( 2πc

a
), ωcrit

m = 0.2798( 2πc
a

), ωcrit
cp = 0.2895( 2πc

a
), and

P crit
0 = 5×10−5( 2πcε0a

2

χ (3) ), corresponding to frequency mis-
match �cp ≈ −0.07ωcrit

cp /(2Qp) and ηmax = 0.42. Note that
because the radiative losses in this system are nonnegligible,
the maximum efficiency of this system is ≈82% of the optimal
achievable efficiency =ωp/(2ω0) ≈ 0.51. At these small �cp,
we find that depletion of the pump is readily achieved through
the critical parameters associated with perfect frequency
matching. However, as illustrated in Sec. III A 1, one can also
choose a design that supports high-efficiency limit cycles.

1. Power requirements

Thus far, we have expressed the power requirements of
this system in dimensionless units of 2πcε0a

2/χ (3). Choosing
to operate at telecom wavelengths λc0 ≡ 2πc/ωc0 = 1.5 μm,
with corresponding n ≈ 3.4 and χ (3) = 2.8×10−18 m2/V2 [1],
we find that a = 0.2848×1500 = 427 nm and P crit

0 ≈ 50 mW.
We note, however, that although our analysis above incorpo-
rates effects arising from linear losses (e.g., due to material
absorption or radiation), it neglects important and detrimental
sources of nonlinear losses in the telecom range, including
two-photon and free-carrier absorption [86,87]. Techniques
that mitigate the latter exist, e.g., reverse biasing [88], but
in their absence it may be safer to operate in the spectral
region below the half-band-gap of Si [78]. One possibility is to
operate at λc0 = 2.2 μm, where χ (3) ≈ 1.5×10−18m2/V2 [78],
leading to a = 627 nm, and approximately four-times larger
P crit

0 ≈ 200 mW. For a more detailed analysis of nonlinear
absorption in triply resonant systems, the reader is referred to
Ref. [89]. While that work does not consider the effects of
nonlinear dispersion, SPM and XPM, or frequency mismatch,
it does provide upper bounds on the maximum efficiency in
the presence of two-photon and free-carrier absorption.

IV. CONCLUDING REMARKS

In conclusion, by combining TCMT with fully nonlinear
FDTD simulations, we have demonstrated the possibility
of achieving highly efficient DFWM at low input powers
(∼50 mW) and large bandwidths (Q ∼ 1000) in a realistic
and chip-scale (μm) nanophotonic platform (silicon nanobeam
cavity). Our theoretical analysis extends the initial work of
the authors of Ref. [41] by incorporating and analyzing
important effects arising from linear losses, SPM andXPM,
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as well as mismatch of the cavity-mode frequencies, e.g.,
such as those that arise from fabrication imperfections, where
the latter was shown to lead to a variety of interesting
dynamical behaviors, including limit cycles that arise in the
presence of infinitesimally small frequency mismatch near
critical solutions. Although power requirements in the tens
of mWs are not often encountered in conventional chip-scale
Si nanophotonics, they are comparable if not smaller than
those employed in conventional centimeter-scale DFWM
schemes [88,90,91]. Our proof-of-concept design demon-
strates that full cavity-based DFWM not only reduces device
dimensions down to μm scales, but also allows depletion
of the pump with efficiencies close to unity. Compared
to conventional integrated whispering-gallery-mode (WGM)
resonators [22,92,93], nanobeam cavities offer much smaller
mode volumes, ∼( λ

n
)3 in nanobeams as compared to ∼100( λ

n
)3

in WGM cavities, and therefore allow exploration of these

processes at low powers and much larger bandwidths (which
is especially important in this system due to its sensitivity to
frequency mismatch). From a fabrication viewpoint, they are
also desirable in that they allow for minimal footprint and
maximal device density on chip. Finally, we emphasize that
there is considerable room for additional design optimization.
For instance, we find that increasing the radiative lifetimes of
the signal and converted modes (currently almost two orders
of magnitudes lower than the pump) can significantly lower
the power requirements of the system.
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