High-efficiency and broadband on-chip electro-optic frequency combs generators

Citation:

Yaowen Hu, Mengjie Yu, Brandon Buscaino, Neil Sinclair, Di Zhu, Rebecca Cheng, Amirhassan Shams-Ansari, Linbo Shao, Mian Zhang, Joseph M. Kahn, and Marko Loncar. 8/29/2022. “High-efficiency and broadband on-chip electro-optic frequency combs generators.” Nature Photonics, 16, Pp. 679. Publisher's Version

Abstract:

Developments in integrated photonics have led to stable, compact and broadband comb generators that support a wide range of applications including communications1, ranging2, spectroscopy3, frequency metrology4, optical computing5,6 and quantum information7,8. Broadband optical frequency combs can be generated in electro-optical cavities, where light passes through a phase modulator multiple times while circulating in an optical resonator9,10,11,12. However, broadband electro-optic frequency combs are currently limited by low conversion efficiencies. Here we demonstrate an integrated electro-optic frequency comb with a conversion efficiency of 30% and an optical span of 132 nm, based on a coupled-resonator platform on thin-film lithium niobate13. We further show that, enabled by the high efficiency, the device acts as an on-chip femtosecond pulse source (336 fs pulse duration), which is important for applications in nonlinear optics, sensing and computing. As an example, in the ultrafast and high-power regime, we demonstrate a frequency comb with simultaneous electro-optic and third-order nonlinearity effects. Our device paves the way for practical optical frequency comb generators and provides a platform to investigate new regimes of optical physics that simultaneously involve multiple nonlinearities.
Last updated on 10/31/2022