Systematic Investigation of Millimeter-Wave Optic Modulation Performance in Thin-Film Lithium Niobate

Citation:

Yiwen Zhang, Linbo Shao, Jingwei Yang, Zhaoxi Chen, Ke Zhang, Kam-Man Shum, Di Zhu, Chi Hou Chan, Marko Loncar, and Cheng Wang. 2022. “Systematic Investigation of Millimeter-Wave Optic Modulation Performance in Thin-Film Lithium Niobate.” Photonics Research, 10, 10, Pp. 2380-2387. Publisher's Version
[PDF]1.15 MB

Abstract:

Millimeter-wave (mmWave) band (30 - 300 GHz) is an emerging spectrum range for wireless communication, short-range radar and sensor applications. mmWave-optic modulators that could efficiently convert mmWave signals into optical domain are crucial components for long-haul transmission of mmWave signals through optical networks. At these ultrahigh frequencies, however, the modulation performances are highly sensitive to the transmission line loss as well as the velocity- and impedance-matching conditions, while precise measurements and modeling of these parameters are often non-trivial. Here we present a systematic investigation of the mmWave-optic modulation performances of thin-film lithium niobate modulators through theoretical modeling, electrical verifications and electro-optic measurements at frequencies up to 325 GHz. Based on our experimentally verified model, we demonstrate thin-film lithium niobate mmWave-optic modulators with a measured 3-dB electro-optic bandwidth of 170 GHz and a 6-dB bandwidth of 295 GHz. The device also shows a low RF half-wave voltage of 7.3 V measured at an ultrahigh modulation frequency of 250 GHz. This work provides a comprehensive guideline for the design and characterization of mmWave-optic modulators and paves the way toward future integrated mmWave photonic systems for beyond-5G communication and radar applications.
Last updated on 10/26/2022