Coherent control of a superconducting qubit using light

Citation:

Hana K Warner, Jeffrey Holzgrafe, Beatriz Yankelevich, David Barton, Stefano Poletto, CJ Xin, Neil Sinclair, Di Zhu, Eyob Sete, Brandon Langley, Emma Batson, Marco Colangelo, Amirhassan Shams-Ansari, Graham Joe, Karl K Berggren, Liang Jiang, Matthew Reagor, and Marko Loncar. Submitted. “Coherent control of a superconducting qubit using light.” https://arxiv.org/abs/2310.16155.
[PDF]4.94 MB

Abstract:

Quantum science and technology promise the realization of a powerful computational resource that relies on a network of quantum processors connected with low loss and low noise communication channels capable of distributing entangled states [1,2]. While superconducting microwave qubits (3-8 GHz) operating in cryogenic environments have emerged as promising candidates for quantum processor nodes due to their strong Josephson nonlinearity and low loss [3], the information between spatially separated processor nodes will likely be carried at room temperature via telecommunication photons (200 THz) propagating in low loss optical fibers. Transduction of quantum information [4-10] between these disparate frequencies is therefore critical to leverage the advantages of each platform by interfacing quantum resources. Here, we demonstrate coherent optical control of a superconducting qubit. We achieve this by developing a microwave-optical quantum transducer that operates with up to 1.18% conversion efficiency (1.16% cooperativity) and demonstrate optically-driven Rabi oscillations (2.27 MHz) in a superconducting qubit without impacting qubit coherence times (800 ns). Finally, we discuss outlooks towards using the transducer to network quantum processor nodes.