High-Q Cavity Interface for Color Centers in Thin Film Diamond

Citation:

Sophie W. Ding, Michael Haas, Xinghan Guo, Kazuhiro Kuruma, Chang Jin, Zixi Li, David D. Awschalom, Nazar Delegan, F. Joseph Heremans, Alex High, and Marko Loncar. Submitted. “High-Q Cavity Interface for Color Centers in Thin Film Diamond.” arXiv:2402.05811. Publisher's Version

Abstract:

Quantum information technology offers the potential to realize unprecedented computational resources via secure channels capable of distributing entanglement between quantum computers. Diamond, as a host to atom-like defects with optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend the reach of quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential ingredients of an efficient interface between spins and photons that are used to store and communicate quantum information respectively. Despite great effort, however, the realization of visible PhC cavities with high quality factor (Q) and design flexibility is challenging in diamond. Here, we demonstrate one- and two-dimensional PhC cavities fabricated in recently developed thin-film diamonds, featuring Q-factors of 1.8x10^5 and 1.6x10^5, respectively, the highest Qs for visible PhC cavities realized in any material. Importantly, our fabrication process is simple and high-yield, based on conventional planar fabrication techniques, in contrast to previous approaches that rely on complex undercut methods. We also demonstrate fiber-coupled 1D PhC cavities with high photon extraction efficiency, and optical coupling between a single SiV center and such a cavity at 4K achieving a Purcell factor of 13. The demonstrated diamond thin-film photonic platform will improve the performance and scalability of quantum nodes and expand the range of quantum technologies.